Jump to content


Featured Entries

  • MikeR

    The End Of My Pliocene Project

    By MikeR

    When I began this blog late in 2010, my intention was to report on recent field trips however, with the exception of one excursion each into the Upper Miocene, Lower Pliocene and the Calabrian Pleistocene, all of my posts have concentrated on the Upper Pliocene of the US Atlantic and Gulf coastal plains. I already had an extensive collection of Florida Upper Pliocene invertebrates that I had collected while a resident of the state in the late 80s and early 90s. The fossils from these beds are contemporaneous with the Zone 2 Yorktown beds of Virginia and North Carolina that I began collecting in the early 2000s, the Duplin Formation that I collected in 2010 and several trips to Jackson Bluff localities in the Florida panhandle in 2011. These more recent collecting endeavors required a reassessment of the identification of my Florida collection due to a better recognition on my part of modern thoughts on speciation and from working with paleontologists who research these deposits. Also I began rejecting non-peer reviewed books and guides geared toward amateurs which exhibited sloppy and unsubstantiated research. In an effort to free display space I began cross-referencing species from different formations to compile at least what I believe is very accurate species identifications and to place the best example of each species regardless of formation within my display cabinets (fig. 1 & 2). Figure 1. Upper Pliocene (Piacenzian) Bivalvia Eastern United States. Figure 2. Upper Pliocene (Piacenzian) Gastropoda Eastern United States. The attached species list represents the completion of my Pliocene project. Unlike my previous lists which concentrated on the mollusks from particular sites and formations, the 16 page document below is a compilation of all Eastern United States Piacenzian fossils in my collection both vertebrate and invertebrate. The ability to observe different species geographically has led to changes that can be seen if comparing mollusks in the list below to those noted from my previous posts. I have eliminated species which were obviously the same but named differently based upon the regional description of the molluscan fauna by earlier research. The list is not meant to be comprehensive of these deposits, but more of a guide of what can be found. Although my collection is strong in Sarasota area Pinecrest, Jackson Bluff Formation and Zone 2 Yorktown, it is very weak in Pinecrest fauna from the coral reef facies near Miami and the Kissimmee River area, weak in the Duplin Formation (only two localities sampled), and almost absent other than a few trades from early Piacenzian faunas from the Raysor and Goose Creek Formations of the Carolinas. For a more extensive list of species from this period of time I would refer those interested in mollusks to Campbell (1993) and for Florida vertebrates to Hulbert (2001). Piacenzian Fauna List_Reagin.pdf The systematics of the specimens listed are by those fields that I find the most useful in query searches within my Access database and for the most part are as follows: Phylum, Class, Order, Family, Genus, Species, and Subspecies. In stating the distribution of each species, only the formation is noted not the individual members of the Yorktown and Tamiami Formations. Abbreviations used are Yorktown (Y), Duplin (D), Jackson Bluff (J), Tamiami (T) Chowan River (C ), Goose Creek (G) and Raysor (R ). For those taxa which are near to another cf. (similar to) was used. Less specific affinity (aff.) as well as species undetermined (sp.) are designated. The reasoning behind classification I used is addressed in the notes section below. NOTES Algae. A single species of calcareous algae was found in the limestone facies (Ochopee) of the Tamiami Formation which could not be identified to genus or species. Bryozoa. The identification of bryozoa is highly specialized requiring microscopic identification of various feeding structures. Due to a lack of references and interest I identified most as bryozoa species. Anthozoa. Eleven species of coral were collected; almost all of which are from the Pinecrest. The exception is the ubiquitous Septastrea marylandica which led a commensal lifestyle by growing on hermit crab inhabited gastropod shells. The other coral outside the Pinecrest was Septastrea crassa found near Williamsburg, Virginia which I obtained with a collection of Zone 2 Yorktown fossils in a trade from the 80s. Since I did not collect it personally and have not found this particular species at any of the numerous Zone 2 sites that I have collected over the past decade I have designated it as questionable from the Yorktown (Y?). Brachiopoda. Only a single Upper Pliocene brachiopod is listed. Discinisca lugrubris is a geologically wide ranging species found from the Lower Miocene to the Upper Pliocene colder water Bed 11 of the Pinecrest Member of the Tamiami Formation and the Jackson Bluff Formation. Mollusca. Since Piacenzian deposits are known world wide for their shell beds, it stands to reason that mollusks should dominate. The list contains 244 species and subspecies of bivalves, 370 of gastropods and 6 scaphopods. In general, the warmer the water, the higher is gastropod diversity. The list shows that bivalves are wide ranging and less so with gastropods where many more were found only in the warmer water Tamiami Formation. Aragonitic shells do not preserve well in carbonate environments and are often difficult to identify to species. Those shells from the Ochopee Member of the Tamiami Formation that were preserved as internal casts that I felt were probably represented in Pinecrest were not listed separately (i.e. Ficus sp. Internal cast from the Ochopee is probably Ficus jacksonensis from the Pinecrest). I followed the systematics of Turgeon et. al. (1998) which Roger Portell Director, Division of Invertebrate Paleontology of the Florida Museum of Natural History uses for the mollusks in the Florida Paleontology Society publications. This has led to some interesting changes in classification of gastropods within my collection. In a previous post to the forum, I had mentioned that at some point the subgenera of the family Turritellidae had been reclassified to genera. As stated by Turgeon concerning several recent species that were reclassified in this manner “We do not know the source of this reclassification nor have we seen evidence of subsequent acceptance...” therefore I reclassified all genera in Turritellidae back to Turritella with the exception of valid Vermicularia. The most drastic change in classification had to be with members from the families Turridae, Drillidae, and Conidae. I originally classified all turrids in Turridae by older systematics based solely on shell characteristics. I have known for awhile that at some point the family had been split based upon internal structure of the animal itself and DNA studies. What I did not know was that some of those species had been reclassified as Conidae. Turgeon noted that the study was controversial but was supported by anatomical and radular data and also stated that the affected subfamilies would be better suited in their own family. It was difficult for me to classify genera Glyptostoma and Cythara as Conidae, but I did so since I committed to using Turgeon. Cirripedia. Barnacles were more diverse in the Eastern US Upper Pliocene than today but much like bryozoa their specific identification is difficult. Factors for species id include the tubular structure of the outer wall and the internal plates that protect the animal. I feel that most of my identifications are correct however some are based upon morphological features of the outer shell and geographical range and thus might not be accurate. Decapoda. Crabs are a common component of shell beds, however due to the formation of the beds by winnowing, crabs are rarely preserved intact. The majority of crab finds are as isolated legs, claws, and occasional carapaces. Very little study has been made of Pliocene crabs, but most notable are publications by Rathbun (1935) who identified a wide geographical range of species and those of Florida by Portell and coauthors (2002, 2004). The crabs of the Yorktown Formation are not characterized and in many cases at generic level I used similar to reference (Cf.) which like Cirripedia does not follow proper identification rules. Echinoids. Much like crabs, disarticulated echinoid remains can be common in shell beds. In limestone however, because of their calcitic tests and gentle conditions in carbonate environments, echinoids can be preserved intact. I have not collected in the Raysor and Goose Creek Formations but I did receive echinoids from these deposits in trades from the 90s. At one point both of these units were considered members of the Duplin Formation. This has led to designation in the list (D/R) meaning that the original label listed Duplin Formation but due to the attached calcareous matrix, I believe that the specimens are from the Raysor. Vertebrates. Those collectors who have been fortunate to collect at the PCS/Lee Creek Mine are well aware of the rich vertebrate fauna found in the Yorktown Formation. The Yorktown however is divided into two different units—Zone 1 Lower Pliocene (Zanclean) and Zone 2 Upper Pliocene (Piacenzian). One of the distinguish features of these two zones is the richness of vertebrates in Zone 1 compared to their very sparse nature in Zone 2. Vertebrates during this interval are only common in Pinecrest Beds 4 and 11 and a bone layer in Bed 3 consisting of a mass die off of cormorants during a red tide which I never collected. Marine vertebrates can also be found within the Jackson Bluff Formation but not as plentiful as the previously described beds. Redeposited vertebrate remains are found in the Upper Pliocene of the Carolinas and Virginia and are not included in my list. These include teeth of the Cretaceous sharks Squalicorax kaupi and Scapanorhynchus texanus that I have found in the Duplin Formation and vertebrates from the lag deposit found at the contact between the Upper Cretaceous Black Creek Group and Zone 2 Yorktown Formation at my locality 1012 which probably represented concentrated bones and teeth from the Lower Pliocene and Upper Miocene. Upper Pliocene vertebrate remains besides bony fish, shark and ray in my collection include one marine turtle, one land tortoise, a capybara, a walrus, and a dugong. I classified large whale remains as Mysticeti and smaller remains as Odontoceti dolphin although there could be crossover. REFERENCES Numerous references were used and I have them listed according to those for identification or taxonomy and those that I used in writing about the geology or ecology of the deposits described within my blog. In addition to the below publications, I found Greta Polites Fossil Muricidae Website (http://glpolites.us/murex/index.htm) to be invaluable in eliminating synonymous species. My only deviation from her list was with Ecphora which I only recognized two species, E. quadricostata and bradlyae. Identification Campbell, Lyle. 1975. Check List of Marine Pliocene Mollusks of Eastern North America in Plio-Pleistocene Faunas of the Central Carolina Coastal Plain. Geologic Notes (South Carolina Division of Geology) Vol. 19, No. 3. Campbell, Lyle. 1993. Pliocene Molluscs from the Yorktown and Chowan River Formations in Virginia. Virginia Division of Mineral Resources Publication 127. Dall W.H. 1890-1903. Contributions to the Tertiary Fauna of Florida, with Especial Reference to the Miocene Silex-Beds of Tampa and the Pliocene Beds of the Caloosahatchie River, Part I: Pulmonate, Opisthobranchiate and Orthodont Gastropods, Transactions of the Wagner Free Institute of Science of Philadelphia 3(1-VI). Gardner, J. A. 1944. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina: Part 1. Pelecypoda, United States Geological Survey Professional Paper 199-A: iv, pages 1-178, plates 1-23 Gardner, J. A. 1948. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina: Part 2. Scaphopoda and Gastropoda, United States Geological Survey Professional Paper 199-B: iv, pages 179-310, plates 24-38, [iii] Gardner, J. A. and T.H. Aldrich. 1919. Mollusca from the Upper Miocene of South Carolina: with Descriptions of New Species. Proceedings of the Academy of Natural Sciences of Philadelphia 71: pages 17-53. Gibson, Thomas G. 1987. Miocene and Pliocene Pectinidae (Bivalvia) from the Lee Creek Mine and Adjacent Areas in Geology and Paleontology of the Lee Creek Mine, North Carolina, II. Smithsonian Contributions to Paleobiology No. 61. Hendricks, Jonathan. 2008. The genus Conus (Mollusca: Neogastropoda) in the Plio-Pleistocene of the southeastern United States, Bulletins of American Paleontology 375. Kohno, Naoki and Ray, Clayton E. 2008. Pliocene Walruses from the Yorktown Formation of Virginia and North Carolina, and a Systematic Revision of the North Atlantic Pliocene Walruses in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Mansfield, W.C. 1930. Miocene Gastropods and Scaphopods of the Choctawhatchee Formation of Florida, Florida Geological Survey Bulletin 3, 189 pages. Mansfield, W.C. 1931. Some tertiary mollusks from southern Florida. Proceedings of the United States National Museum, v. 79. Mansfield, W.C. 1931. Pliocene Fossils from Limestone in Southern Florida in Shorter Contributions to General Geology, USGS Professional Paper 170, 11 pages. Mansfield, W.C. 1932. Miocene Pelecypods of the Choctawhatchee Formation of Florida, Florida Geological Survey Bulletin 8, 233 pages. Mansfield, W.C. 1936. Stratigraphic Significance of Miocene, Pliocene, and Pleistocene Pectinidae in the Southeastern United States, Journal of Paleontology, Vol 10, No. 3, 24 pages. Mansfield, W.C. 1939. Notes on the Upper Tertiary and Pleistocene Mollusks of Peninsular Florida, Florida Geological Survey Bulletin 18, 128 pages. Mansfield, W.C., 1943 [1944]. Stratigraphy of the Miocene of Virginia and the Miocene and Pliocene of North Carolina in Gardner, Julia ed. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina. USGS Professional Paper 199A, p. 1-19. Hollister, S.C. 1971. New Vasum Species of the Subgenus Hystrivasum. Bulletins of American Paleontology 262. Olsson, A.A. 1967 (1993 Reprint). Some Tertiary Mollusks from South Florida and the Caribbean, Originally - Bulletins of American Paleontology 54(242), The Paleontological Research Institute Special Publication 19: pages 11-75, 9 plates Olsson, A.A., and A. Harbison. 1953 (1990 Reprint). Pliocene Mollusca of Southern Florida with Special Reference to Those from North Saint Petersburg, with special chapters on Turridae by W.G. Fargo and Vitinellidae and Fresh-water Mollusks by H.A. Pilsbry, The Academy of Natural Sciences of Philadelphia Monographs 8, The Shell Museum and Educational Foundation, 457 pages, 65 plates Olsson, A.A., and R.E. Petit. 1964. Some Neogene Mollusca from Florida and the Carolinas, Bulletins of American Paleontology 47(217): pages 509-574, plates 77-83 Olsson, A.A., and R.E. Petit. 1968 (1993 Reprint). Notes on Siphocypraea, Originally - Special Publication 9, The Paleontological Research Institute Special Publication 19: pages 77-88. Petuch, Edward J. 1994. Atlas of Florida Fossil Shells (Pliocene and Pleistocene Marine Gastropods). Chicago Spectrum Press. Portell, Roger W. and Craig W. Oyen. June 2002. Pliocene and Pleistocene Echinoids. Florida Fossil Invertebrates Part 3, 30pp. Portell, Roger W. and Jeffery G. Agnew. February 2004. Pliocene and Pleistocene Decapod Crustaceans. Florida Fossil Invertebrates Part 4, 29 pp. Portell, Roger W. November 2004. Eocene, Oligocene and Miocene Decapod Crustaceans. Florida Fossil Invertebrates Part 4, 29 pp. Portell, Roger W. and B. Alex Kittle. December 2010. Mollusca, Bermont Formation (Middle Pleistocene). Florida Fossil Invertebrates Part 13, 40 pp. Rathbun, Mary J. 1935. Fossil Crustacea of the Atlantic and Gulf coastal plain. Geological Society of America. Special papers; no. 2. Tucker, H.I. and Druid Wilson. 1932. Some new or otherwise interesting fossils from the Florida Tertiary. Bulletins of American paleontology; v. 18: no. 65. Tucker, H.I. and Druid Wilson. 1933. A second contribution to the Neogene paleontology of South Florida. Bulletins of American paleontology; v. 18: no. 66. Tuomey, M., and F.S. Holmes. 1855-1856 (1974 Reprint). Pleiocene Fossils of South-Carolina: Containing Descriptions and Figures of the Polyparia, Echinodermata and Mollusca, Original pages 1-30 and plates 1-12 published in 1855, Original pages 31-152 and plates 13-30 published in 1856, The Paleontological Research Institution Special Publication 12: xvi, 152 pages, 30 plates, [addendum] Ward L.W. and Blackwelder, B.W. 1975. Chesapecten, a New “Genus of Pectinidae (Mollusca: Bivalvia) from the Miocene and Pliocene of Eastern North America. USGS Professional Paper 861. Whitmore, Frank C. Jr and Kaltenbach, James A. 2008. Neogene Cetacea of the Lee Creek Phosphate Mine, North Carolina in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Weisbord, Norman E. 1966. Some late Cenozoic cirripeds from Venezuela and Florida. Bull. Amer. Paleont., vol. 50, no. 225, pp. 1-145, pls. 1-12. Weisbord, Norman E. 1974. Late Cenozoic Corals of South Florida. Bulletins of American Paleontology vol. 66, no. 285. 544 pp. Zullo, Victor A., 1992. Revision of the balanid barnacle genus Concavus Newman. Supplement to Journal of Paleontology, v. 66, no. 6, pt. II. Zullo, Victor A. and Portell, Roger W. 1993. Paleobiogeography of the Late Cenozoic Barnacle Fauna of Florida in The Neogene of Florida and Adjacent Regions, Florida Geological Survey Special Publication No. 37. Paleoecology Allmon, Warren D. 1992. Whence Southern Florida’s Plio-Pleistocene shell beds? Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Allmon, Warren D; Rosenberg, Gary; Portell, Roger W.; and Schindler, Kevin S. 1993. Diversity of Atlantic Coastal Plain Mollusks since the Pliocene. Science, vol. 260:1626-1629. Allmon, Warren D; Spizuco, Mathew P. and Jones, Douglas S. 1995. Taphonomy and paleoenvironment of two turritellid-gastropod-rich beds, Pliocene of Florida. Lethaia, vol. 28:75-83. Allmon, Warren D; Emslie, Steven D.; Jones, Douglas S.; and Morgan, Gary S. 1996. Late Neogene Oceanographic change along Florida’s West Coast: Evidence and mechanisms. The Journal of Geology, vol. 104:143-162. Christie, Max. 2009. Ecological Interactions Across a Plio-Pleistocene Interval of Faunal Turnover: Naticid Cannibalism North and South of Cape Hatteras, North Carolina. Departmental Honors in Interdisciplinary Studies Thesis, The College of William and Mary. Geary, Dana H. and Allmon, Warren D. 1990. Biological and Physical Contributions to the Accumulation of Strombid Gastropods in a Pliocene Shell Bed. Palaios vol. 5:259-272. Jones, Douglas S and Allmon, Warren D. 1999. Pliocene marine temperatures on the West Coast of Florida: Estimates from mollusk shell stable isotopes In J.H. Wrenn, J.-P. Suc, and S.A.G. Leroy, eds., The Pliocene: Time of Change. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 241-250. Molnar, Peter. 2008. Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography Volume 21. Petuch, Edward J. 2004. Cenozoic Seas. CRC Press. Petuch, Edward J. 2007. The Geology of the Everglades and Adjacent Areas. CRC Press. Schmidt, D. N., 2007. The closure history of the Panama Isthmus: Evidence from isotopes and fossils to models and molecules. In: Williams, M., Haywood, A. M., Gregory, J. F., and Schmidt, D. N. Eds.), Deep time perspectives on climate change - marrying the signal from computer models and biological proxies. Geological Society of London, London. Biostratigraphy Campbell, Kenneth M. 1985. Alum Bluff Liberty County, Florida. Florida Geological Survey Open File Report 9. Ketcher, Kathleen. 1992. Stratigraphy and Environment of Bed 11 of the "Pinecrest" Beds at Sarasota, Florida in Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Means, Harley. 2002. Introduction to the Geology of the Upper Apalachicola River Basin in Geologic Exposures Along the Upper Apalachicola River. Southeastern Geological Society Field Trip Guidebook 42. Missimer, Thomas M. 1992. Stratigraphic relationships of sediment facies within the Tamiami Formation of Southwest Florida: Proposed intraformational correlations. Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Petuch, E.J. 1982. Notes on the molluscan paleontology of the Pinecrest Beds at Sarasota, Florida with the description of Pyruella, a stratigraphically important new genus: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 134, p. 12–30. Ward, Lauck W. 1992. Tertiary Molluscan Assemblages from the Salisbury Embayment of Virginia. Virginia Journal of Science, Volume 43, no. 1B. Ward, Lauck W. 1992. Diagnostic Mollusks from the APAC Pit, Sarasota, Florida in Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Ward, Lauck W. 1993. Pliocene Stratigraphy and Biostratigraphy, Virginia to Florida in The Neogene of Florida and Adjacent Regions, Florida Geological Survey Special Publication No. 37. Ward, Lauck W. 2008. Synthesis of Paleontological and Stratigraphic Investigations at the Lee Creek Mine, Aurora, NC (1958-2007) in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Yon, J. William. 1965. Adventures in geology at Jackson Bluff. Florida Geological Survey: Special publication 14. Systematics Hulbert, Richard C. (ed.). 2001. The Fossils Vertebrates of Florida. University Press of Florida. Turgeon, D.D. et al. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. Second edition. American Fisheries Society Special Publication. No. 26. 526 pp.
  • JohnJ

    Ancient Hunters

    By JohnJ

    June 5, 2010 Barry held his camera barely two feet away from the back of an Agkistrodon piscivorus. Although a small snake, it was still very dangerous and he positioned his camera based on years of experience with these reptiles. Known more commonly as a Cottonmouth or Water Moccasin, the twelve inch juvenile snake had coloration similar to the closely related Copperhead. However, its patterns were muted by late afternoon shadows in a remote location that was not favorable to an easy medical evacuation. So, we slowly moved away and eased our paddles back in the water to complete an adventure which began long before daylight.     Almost twelve hours earlier my friend and I had packed our gear, food, and water into my eighteen foot canoe. Soon after, our paddles fell into a synchronous rhythm that allowed us to quietly experience an aquatic wilderness. We were searching in Texas - hunting in alluvial debris and Pleistocene terraces for the slightest hint of extinct creatures. Our unrushed pace allowed us the time to get a feel for the local geology. Occasionally, groundwater from the surrounding area made its way to the base of the Pleistocene gravels and created springs which emerged just above older impermeable shale. The cool water supported rich vegetation that resisted the summer sun. It was also a visual key to the strata we were trying to find.     A little later, we found an area where the gravel spilled onto a ledge just above the water. Almost immediately I spotted a gravel encrusted bone fragment. I looked over to see Barry higher up on the river terrace. Still scanning the area, I hollered, “Hey, I found some mineralized bone over here. Uhhh…wait, here’s another one.” I noticed the second piece was gnarly and pitted while Barry made his way down to inspect my finds.   “What do you think of the encrusted bone?” I asked.  He replied, “Not sure; but there’s no doubt it’s old. Which bone do you think it is?”   I tried to imagine the fossil without the encrusting gravel, “Looks like it could be the ‘joint’ end of a scapula…I’m not sure about the second one, though.”   Before and after cleaning – proximal scapula & unknown fragment   I headed back to the canoe to pack away my finds while Barry searched further down the ledge. It wasn’t long before he yelled he had found more bone, and after I paddled the boat over to him, he grinned and asked me to find the camouflaged fossil. The fragment was difficult to spot amid the varied textures of rock and silt. We were off to a good start.   Barry's mineralized bone fragment   In Texas, June temperatures can quickly reach the upper 90’s. We maintained a regular fluid intake and an occasional soak in the water. Proper hydration and cooling were essential for us to enjoy an amazing adventure versus a headache pounding endurance test. Since we still had more than a dozen miles to travel, the hot conditions could not be ignored.     A few miles later a short rocky ledge barely emerged from the water. It looked like a good spot to check and take a break. What I really did not expect was to step a few feet from the boat and see a broken stone dart point. I looked at it with a little skepticism; the area seemed like a place fisherman would use to access the water and I wondered if someone had passed the time trying to replicate an ancient weapon. But the patina on a few nearby flakes confirmed the find was old.   Barry searched the rocky debris fan on the downstream end of the ledge. I let him know to keep an eye out for more than bone and kept scanning the ground. Before me was an area the size of two cars where the water had peeled away part of an upper bank which had slipped into the water. I stopped. There, in the gravel and weeds, were more flakes…and another dart point! As I reached for my camera, I saw another broken point by my knee…a cool moment. Then things started to get comical - in an amazing sort of way - because as I took the photo of the first point, I spotted a third one just beyond it…an incredible moment!     Still kneeling in the same spot, I yelled to Barry, “Hey, you’re not going to believe this, but I’ve found…hang on….” I shook my head in disbelief at the fourth late Archaic projectile point tucked in the gravel. “You have to come over here, now,” I smiled. I tried to explain to him what had just happened – pointing out each of the finds. He was as awestruck as I, but we both almost lost composure when, within seconds of ‘show and tell’, another light colored point met my eye a few inches from where I laid the paddle. I edged backward to get a good camera angle. Then, I just looked up at Barry in stunned silence and back down again beside my other knee at a small gray-purple dart point. That is when we both erupted with the excitement of two kids.     “I’m now walking away. There have to be more here; so you find them,” I jokingly announced as I headed upstream to survey the ledge. Savoring an unbelievable fifteen minutes of discovery included the analytical questions forced by the finds. Often people have asked, “Where did these artifacts come from?” Sometimes the answer is simple because the ‘site’ still exists. Other times, I will touch two fingers together in front of me, representing a point in space, because similar coordinates may be all that remain of ancient eroded camps. My quick recon of the area seemed to confirm a similar origin for these artifacts. Our timing had offered us the chance to experience something that would have been erased by the next flood.   My six dart points fill Barry’s hand   Barry’s voice carried down the bank, “I found one!” I saw him gently scratching the sand and gravel in the weeds. I took in the view of the area because I wanted to remember this place and time. Barry called out again, “Hey, you should see this large white base I found!” By the time I made it back to him, he had found another dart! While he pointed out his finds, I felt like we were functioning in a mild state of shock – still trying to wrap our minds around what was happening. After a few more broken finds and photos, we cooled off in the water. In all we found 19 pieces; some were complete and some were fragments.     Dream-like remnants of the artifact discoveries stayed with us for miles. I told Barry I was not sure I would have believed the event if I had not been part of it. Roughly thirteen hundred years earlier, someone made the weapons we found. Handling them was like touching an old pocket knife owned by your great grandfather or holding an old wooden spoon used by your great grandmother - except, they were much older and no one remembered the owners anymore. We could not know what the circumstances were during the last moments someone held these artifacts, but we were the next men to hold them and imagine those days.   We found a few pieces of fossil bone over the next couple of hours and it really began to get hot. To get relief from the temperature, we paddled closer to the shady banks. On few occasions we startled beavers from their dens. Not many things can get your attention quicker than a forty pound animal hurtling into the water on the edge of your vision. My only regret was that the camera had not recorded our comical reactions.   Then, as we rounded a large bend, a huge gravel bar came into view. In the distance, I could see something big lying on the rocks. “Barry, what’s that?”   “I don’t know….” He shaded his eyes and leaned forward, then exploded, “IT’S A HUGE GAR!” He spun to face me, “Can I have the SKULL?!” He spun back, “It’s HUGE! You’ve got to let me have it, please!”   He sounded like a ten year old begging for his favorite birthday present. It was hilarious. But my smile was temporarily gagged when I caught a whiff of the almost dry carcass. “If you can separate the skull from the rest, you can have it…but it stays on your end of the canoe,” I winced.     The smell matched the size of the alligator gar – it was a monster. I was fascinated to see such a large specimen up close. Barry finally separated his prize from its ragged remains. Then, he placed it in the canoe under his seat and we continued to search the bar.     The multi-colored gravel camouflaged many pieces of petrified wood and the new ‘gar skull owner’ took advantage of the canoe’s carrying capacity. We left shore a little heavier and smellier. Unfortunately for me, the prevailing wind came from the bow of the boat. I joked with him about the odor coming from his direction, but he firmly insisted he was unaware of any stench.   On another bar, the gravel teased us with more bits of bone; then Barry spotted a large brown lump. He called me over to take some photos. Whose bone he had found was not immediately obvious; but it had some size. Only after he freed it from the sand were the features of a large vertebra confirmed. Likely from a mammoth, it had suffered the erosive effects of time and water. Yet, Barry grinned. He had accomplished one of the goals we had for the trip – find mammoth bone.         The heat was relentless, but we kept cooling off and drinking. Even the butterflies were frequently tapping moisture and minerals in the damp sand. Eventually, we reached an area where the channel narrowed and we took advantage of the shade. I was looking for beaver dens when Barry cried, “Snake! Back there by the large stump!”     We buried the paddles in a series of strong back strokes to reverse our direction. I finally spotted the handsome reptile crawling into a small pile of logs. I could tell he wanted to catch it, when he almost whispered, “Elaphe obsoleta lindheimeri.” After three seconds of heat affected thinking, I realized he had not issued curses to move faster, but had just named the scientific classification for a Texas Rat Snake – the name that had passed through my mind 5 seconds earlier….  Barry scrambled up the bank and had the snake in hand within two minutes. He slowly manipulated it while I took photos. I have always enjoyed my encounters with these non-poisonous reptiles. They can be very aggressive and strike repeatedly, or try to intimidate any threats with their loud hiss and vibrating tail. He left on the log where we found it.     About a half hour downstream we were exposed again to the late afternoon sun. It reflected from the water and the barren high bluffs beside us. We paddled and scanned both water and banks. Through the salty sweat in my eyes, I saw something out of place halfway up one of the bluffs.   “OK, that can’t be what I think it is, can it Barry?” A bowling ball sized dome contrasted sharply with the surrounding tan soil. We slowed the canoe to a stop. I remembered the “dome” of a four foot mammoth humerus I had found almost a year earlier…. My heart rate increased.     Barry insisted, “John, that shape is too perfect; it has to be a bone.” The closer we got the boat, the more my pulse quickened. From fifteen feet below it, I still had to get closer to allow myself to acknowledge the obvious…it was a bone!     We positioned the canoe as close as possible to the vertical bank. The water was not moving fast there, but it was deep. In a tricky move that involved me stepping on the tip of the stern and stabbing my rock hammer into the soil of the steep ledge above, I pulled myself up to a spot where I could rest. Our access point was a little downstream of the “dome”, so I had to dig footholds to make my way to the find. It was impressive when I could finally rest beside it. “Hey Barry, it’s bone!” I grinned.   After a difficult time staging a few digging tools, we started to excavate. I carefully determined the perimeter of the fossil and had some vivid flashbacks to last year’s humerus find. However, the deeper we dug, the more it became apparent that the rest of the bone was not attached. We tested the ‘ball’ for movement and it popped free of the matrix below. In the soil below, we did not find any more evidence of bone.     Initially it seemed there was a large scavenging scar across the surface, but after cleaning, the mark appeared to be an eroded part of the internal vascular structure. Other old gouges and marks may have been due to ancient scavenging. Shape and size suggested I had found my first mammoth ‘femur ball’ or the head of the femur. Regardless of the number of mammoth fossils I have found, they never cease to spark my imagination.   Mammoth femur head – approx. 7 inches in diameter     Scars and vascular structures   The shadows had begun to lengthen by the time we loaded the femur ball and started back downstream. Temperatures had dropped a few degrees which energized us for the next few miles. In a large eddy, we saw another snake crossing the water and sped up to see it. Both of us recognized the juvenile Water Moccasin as it paused and floated on the water. Barry pulled out his camera and I positioned the canoe to assist him. All was going well until the young snake thought the boat would make a good rest stop. The most important result of the next few moments was that no one entered the water, and nothing entered the canoe. I repositioned us to allow the little pit viper to reach the bank. It seemed to respond to the security of solid ground and assumed the confident demeanor of the species.     We reached the take-out after twelve hours on the water. Tired, but feeling the satisfaction of an incredible adventure, we completed a relatively short shuttle run back upstream. The trip had so many layers – so many memories. We hunted and found what we sought. And somewhere between our imaginations, the water, willows, cottonwood, and stone, we caught a reflective glimpse of the ancient hunters.
  • andreas

    The Columbianus Zone/alaunium 2/ Norium/upper Triassic, In The So Called “Hallstatt Limestone” Of The Northern Calcareous Alps In Austria

    By andreas

    The columbianus Zone/Alaunium 2/ Norium/Upper Triassic in the so called "Hallstatt Limestone" of the Northern Calcareous Alps in Austria Dear Fossil Forum members! This pictured report about the ammonite bearing Triassic Hallstatt limestone will be the first one of a continuous series of reports. Since the beginning of the geological research in the Northern Calcareous Alps of Austria in the 19th century, about 500 species of Triassic ammonites have been described from the Hallstatt limestone by Mojsisovics, Hauer, Diener and other authors. The most important person in the development of the first Alpine Triassic ammonoid biostratigraphy was the Austrian palaeontologist Edmund von Mojsisovics. When viewing his classical monographs one is overwhelmed by the stunning Lithographics created by the artists of the late 19th century. Every recent serious triassic ammonoid researcher includes these old works in the standard literature of triassic ammonoids. Unfortunely his ammonoid bio-chronostratigraphic scale had some mistakes (changed zones) especially the incorrect stratigraphic position of some ammonoid zones in the Norian stage. It was the merit of E.T. Tozer to discover this weakness and to correct it. Hallstatt limestone facies is a type of triassic Ammonitico Rosso facies which also occurs in several other locations all over the world. The Hallstatt Limestone Facies of Austria consists typically of red to grey –coloured, in some parts abundantly fossiliferous limestones locally interbedded with marls. Also strongly condensed successions are common. Fossils mostly do not occur in continuous layers but in so called lenses and fissure fillings. The most common fossils are Ammonoids and Nautiloids, but Crinoids ossicles, Bivalves, Conodonts and Gastropods also occur. In this report I will introduce you to the Triassic ammonoid zone of the Alaunium 2 /Norium/ Upper Triassic of the Hallstatt formation. The stratigraphic level lower Alaunium 1 will be shown in a future report. Fig.1 A very beautiful view of a tectonic border. The Valley in front marks the tectonic border between the mainly Triassic Hallstatt unit und the Tirolikum unit of the Totengebirgs nappe. The highest mountain shown on the picture is the "Loser". The well bedded limestone in the summit area are of Jurassic age. This is in turn resting on Triassic "Dachstein" limestone that ends roughly in the middle of the picture. The name of this stage was chosen by Mojsisovics after the Celtic folk of the Alauns. In historical times this tribe lived in the forelands of the calcareous Alps in the area of the later Roman province Noricum. Zone ammonite of the Alaunium 2, outside of the Tethys realm, is Mesohimavatites columbianus Mc LEARN, well known from the boreal Triassic of British Columbia in Canada. In the Tethys realm the whole Alaunium is split into three subdivisions. Alaunium 1 = Bicrenatus -Zone, Alaunium 2 = (instead Columbianus) Hogarti- Zone, Alaunium 3 = (instead Columbianus) Macer -Zone The subzones I-IV shown in the timescale below were established after bed by bed collections in the well-bedded erratic limestone blocks of Timor by the Austrian geologist Franz Tatzreiter. Fig.2 In the Hallstatt limestone of the northern calcareous Alps, Himavatites sp. occurs very scarcely. It is impossible to use this genus for Stratigraphic aims on new detected locations. A normal collector could use the following rough scheme to insert ammonoids in the right stratigraphic subzone. But notice that strong condensation, fissure filling etc. can blur this schema. For a newbie collector it is much more difficult to find some fossils there at all. To place them into the right ammonoid zone is the easier part of the exercise. Rough scheme, to place ammonoids into the right subzones of the Alaunium 2 in the Hallstatt limestone. Subzone I+II: Distichites (especiallys in II) but no Halorites, Subzone III: Halorites starts, Distichites can be found too, but ends in this subzone, Subzone IV: Halorites frequent, main zone of „catenate Halorites" especially in the later time of this subzone. In the upper sphere of subzone 3 and in the lower sphere of subzone 4 Halorites sp. is a very common faunal element. In locations which expose this time interval Halorites is more common than other leiostraca (=ammonoids without sculpture) ammonoids like Arcestes sp. The often used term Halorites horizon (KRYSTYN, L., 1973) points that out exactly. Representative for the family of the Haloritidae, is shown Halorites ramsaueri (QUENST.),.Sommeraukogel, MOJSISOVICS (Bd. II), Wien 1893, Tafel 71, 76 und 77. Fig.3 The venter views laterally right show the variability of the end living chamber (after pictures by MOJSISOVICS Bd. II, Wien 1893) of Halorites ramsaueri QUENST. The right venter view could also be termed as a Halorites macer. The difference between H. macer and H. ramsaueri is not clear due to the great variability of these two species and is totally questionable in my opinion. Fig.4 Catenohalorites catenatus BUCH form MOJSISOVICS (Bd. II), Wien 1893 To the genus „Catenohalorites" count all species of Halorites, which show the chain like („catenat") arranged nodes of the inner whorls on the phragmocon too. (The inner whorls are more or less catenat by all Halorites sp.) Historical locations Beside the well known historical location of the Sommeraukogel, which exposed all four subzones, there are several other historical locations. For example: Hallein, Hoher Student, Leisling, Pötschenhöhe, Rossmoos and Röthelstein. Years ago I was lucky to find a talus block in an area of such an historical location. Later in this report I will show the ammonoids of this block. Two new faunas shown here in this report came from locations hitherto not yet described. Fauna 1 The first new location is in an area where the normal succession of limestone is penetrated by fractures with fissure filling and reworked horizons. One reworked horizon (not for sure yet, it could also be an untypical fissure filling) shows a Halorites fauna. Two nearby located, clear fissure fillings show a faunal association with Distichites but without Halorites. A shell fragment of a Himavatites sp. in the Distichites fissure may confirm the higher hogarti zone. One highlight of the Halorites location was the discovering of a Bambanagites MOJS. 1896. This is the first evidence of this genus in the Hallstatt realm. So far Bambanagites is yet only known from the Halorites limestone of the Bambanag- succession on Niti- Pass (Himalaya) in India, described by MOJSISOVICS with two species (B. schlagintweiti MOJS. and B. dieneri MOJS) In Dieners work, „Fauna of the Tropites-Limestone of Byans", another species, B. kraffti DIENER, is described. The Venter of B. kraffti is very sharp with only weak waves on the flank. Further research on Bambanagites (member of the family Pinacoceratidae) resulted in no other location/occurrence than the above mentioned location in India. Maybe Bambanagites occurs also in the Triassic of Timor. I haven't found any citation but judging by the frequent occurrence of fauna of alaunian ammonites there, it could be possible to find some. Fig 5 Bambanagites cf. dieneri MOJS. a first evidence in the Hallstatt limestone of the eastern Alps, possibly a worldwide first evidence outside the type locality in India. Fig.6 Bambanagites Dieneri, MOJSISOVICS 1896 .Cephalopoden der oberen Trias des Himalaya Taf. XVIII, Fig. 3 - 6. The impression of the Bambanagites sp. is on the backside of this slab with Halorites cf. macer MOJS.(8cm) on the following picture Fig.7 Halorites cf. macer MOJS. found in the location together with Bambanagites Fig.8 Halorites sp. with very prominent nodes on the venter Fig.9 Washed block from this location, with visible Halorites sp. Several other ammonoid species are also visible on this block which are frequent in the Alaunium 2. Rhacophyllites neojurensis QUENST. , Placites sp,, Halorites div. sp., Arcestes sp., Leislingites sp., Megaphyllites sp., Paracladiscites multilobatus BRONN., Steinmannites hoernesi HAUER, Alloclionites ares MOJS It is further worth a mention about the occurrence of the Ammonite genus. cf. Psamateiceras in this location. Natural picture size is 45cm. Other important ammonoid species of the macer zone A beautiful, conspicuous faunal element of the macer zone is Steinmannites sp. With different species this genus shows its maximum in this zone and was found relatively frequently in this location within the Halorites location. Fig.10 Steinmannites hoernesi (HAUER) from the Halorites-area in compairson with a Fig.11 cf. Eosteinmannites sp. from the Distichites-area of this location. Fig.12 ? cf. Pseudosirenites sp.(3cm) or cf. Mesohimavatites sp. from the Halorites-area Fig.13 Paracladiscites multilobatus BRONN. (5cm) Another frequent faunal element of the Alaunium 2 is Paracladiscites multilobatus BRONN. This species differs from Cladiscites and Hypocladiscites by the absence of the spiral striations. Only fine radial growth lines are visible on the shell. The genus Paracladiscites reaches throughout the whole columbianus- Zone up to the zone of Sagenites reticulatus/Cochloceras/Paracochloceras (Sevat2) Distichites Fig.14 Distichites megacanthus MOJS. from the Distichites area of this location. Fig.15 Venter view of Distichites megacanthus MOJS. Diameter is 19 cm; this is rather the growth limit of this species. Distichites sp. is easy to determine by the two bulges following the venter furrow Fig.16 Distichites cf. kmetyi (8cm) of this location Distichites were found in different species at this location but very scarcely. From 30-40 other ammonite's roughly one piece of Distichites sp. was found. Most common ammonites are Placites and Arcestes. Fig.17 Rhacophyllites neojurensis QUENST. (7cm) from the Distichites-area Rhacophyllites sp. runs up to the Sevat Fauna 2 The second new location comes from another area and is also a reworked horizon. This horizon is associated to a small tectonic fault which strikes through the surrounding normal-bedded limestone at a low angle. This zone of weakness may have already been active at the time of the limestone sedimentation and may have worked as a trap for fossils. The stratigraphic lower part (compared to the surrounding limestone beds) of this horizon bears big Halorites cf. ramsaueri embedded in micritic red limestone which was tectonically stressed. In the stratigraphic younger part of this horizon, compared to the normal-bedded surrounding limestone beds, sparitic fissure filling is given in which abundant small ammonoids and gastropods are embedded. According to the occurrence of scarce Sagenites sp. small catenate Halorites and small Hydrozoans, this sparitic part of the fissure filling dates into the subzone IV (after Tatzreiter). Fig.18 Cross-section of a Rhacophyllites neojurensis QUENST. In situ picture from the white sparitic filled stratigraphic upper part of the fissure. Natural size of the picture ca.30x25cm The left side of the picture shows how unspectacular the weathered rock looks, although the mossy vegetation has been removed before by hand. Fig.19 Gastropoda and Halorites-core (1cm), embedded in white calcite. Fig. 20 Slab with Steinmannites hoernesi HAUER, Paracladiscites multilobatus BRONN, Arcestes sp., Placites sp. und Leislingites sp., within white calcite embedded red limestone lithoclasts of the stratigraphic upper part of the fissure. Slab size is 16cm Fig.21 Visible Halorites sp. end body chamber from the stratigraphic lower part of this fissure. Fig.22 Block from the tectonically stressed area of this fissure. Well visible are the calcitically healed slip movements in this rock which show us a "frozen" moment during the lithification of this limestone. Now to the aforementioned talus block of an historical location. After the first blow of the hammer a Halorites was visible. By finding an Amarassites cf. semiplicatus HAUER I was able to date the fauna of this block into the Subzone III afterTatzreiter. Fig.23 Amarassites cf. semiplicatus HAUER (5cm) from the above mentioned talus block of an historical location. Fig.24 Halorites sp., freshly split talus block. Natural picture size ca.20cm At the end of my report some pictures of another Alaunian 3 Fauna. From this location I have less material. The faunal composition differs a little bit from the above mentioned locations. New to this location is cf. Parajuvavites mercedis MOJS. and cf. ?Acanthothetidites sp. Fig.25 Slab from this Alaunian fissure with cf. ? Acanthothetidites sp, („thorned"Ammonite on top, 3cm) Fig.26 Paracladiscites multilobatus BRONN, Arcestes sp., Parajuvavites cf. mercedis MOJS.(ribbed ammonite) Size of slab ca. 10cm Fig.27 Matrixrock of this location Natural size on picture ca. 35cm I hope you have enjoyed this report about my favourite collecting area. Unfortunly I cannot load up graphics. Maybe it is possible and I only do not know how to do this. Maybe somebody can help me in this case. A special thank is given to Fossil forum member "Ludwigia" for correcting my uncivil kind of English. Best regards Andreas Literature: DIENER, C.: Fauna of the Tropites-limestone of Byans. In: Himalayan Fossils, Palaeontologia Indica,(ser.15) 5/1, 1-201, Calcutta 1906 KRYSTYN, L. Zur Ammoniten und Conodonten-Stratigraphie der Hallstätter Obertrias(Salzkammergut, Österreich), Verh.Geol. B.-A., Wien 1973 KRYSTYN, L., SCHÄFFER, G. & SCHLAGER, W. (1971b): Der Stratotypus des Nor.- Annales Inst. Geol. Publ. Hungar., 54, 2, 607-629, 7 Abb., Budapest MOJSISOVICS, E. 1893: Die Cephalopoden der Hallstätter Kalke, Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, II Band, Wien 1893 MOJSISOVICS, E. 1896: Beiträge zur Kenntniss der obertriadischen Cephalopoden Faunen des Himalaya, Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch–naturwissenschaftliche Classe, 63, 575–701. Wien 1896, TATZREITER, F. 1981, Ammonitenfauna und Stratigraphie im höheren Nor(Alaun, Trias) der Tethys aufgrund neuer Untersuchungen in Timor, Denkschr. Österr. Akad. Wiss., math.-naturwiss. KI., 121, Wien 1981, Springer Verlag TATZREITER, F. 1985. Zur Kenntnis der obertriadischen (Nor; Alaun, Sevat) trachyostraken Ammonoideen Jb. Geol. B.-A. ISSN 0016-7800 Band 128 Heft 2 S.219-226 Wien, Oktober 1985, 8 Abbildungen TATZREITER,F. 1984: Bericht über paläontologische Untersuchungen in Hallstätterkalken auf Blatt 76 Wr. Neustadt und 96 Bad Ischl. - Jb. Geol. B.-A., 128/2, Wien 1985 TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin, 467,1–663.

Our community blogs

  1. Prognathodon saturator 101

    • 1
    • 2
    • 177

    Recent Entries

    I am attempting to reconstruct the food chain of the Eromanga Sea and am having a bit of trouble finding size estimations on Cardabiodon so I was wondering if anyone here could help me with this

  2. Here are the numbers I promised ;):

    From 07/16/2017 to 09/13/2018, about 140 hippuridit rudist specimens were found in the scree slope of "Point 25", the sweetest of all spots in St. Bartholomä. The species distribution is (approximate numbers, with examples):

    Hippurites colliciatus: 80 (with 140 individuals – many pseudocolonies!) - F, G, H, J

    Hippurites nabresinensis: 10 - I and possibly K

    Vaccinites vesiculosus: 25 - A, B

    Vaccinites alpinus: 10 - C

    Vaccinites cf. sulcatus: 5 - D, E

    Vaccinites sp.: 10 (no pillars visible, but to nice to be cut, or partial specimens)


    Polished traverse sections of hippuritid rudists found at "Point 25" from 01/20/2018 to 03/23/2018:



    Only hippuritids in this spot? No, during the same period, about 200 radiolitid rudists were also found, giving a total of about 340 rudist specimens from this spot. Thats about 70% of all rudists found in the St. Bartholomä-formation during my hunting and digging trips from 05/07/2017 to 09/13/2018. Ah, and about 10 coral colonies ware also found at "Point 25"...


    It is difficult to estimate how many rudists are still waiting in the scree there. Judging from

    - the amount of material already removed and dumped (about 3-4 m3),

    - the distribution of fossiliferous limestone and other rocks in the scree slope (about 1:2, but highly variable), and

    - considering the amount of „Knödelbrekzie“ that seems to be missing in the outcrop (and now lying in the scree),

    I will try to make an estimate of 200 to 500 rudists that are still there to be found.


    Now I am stopping!

    Thanks for your patience!
    Franz Bernhard

  3. Between A Rock And A Hard Place

    • 1
    • 4
    • 565

    Recent Entries

    Latest Entry

    Sooo, this tiny little thing was was picked up two years ago on Lyme Regis beach, the nodule it was in was pretty big and i had high hopes that it contained more than one.

    Alas, sadly only this poor little soul was retrieved and with a broken shell too. 


    Still, I'm pretty pleased with it considering its my first go at prep work and with no sandblaster. i just cant believe it has taken a little over a month to get the little bugger out.

    i'm in two mind if i should try and remove the remaining matrix or keep it how it is because it acts and a nice little stand.


    so yeah, my first little Gryphaea Arcuata:D

    DSC_1298 (2).JPG




    Since the upload of Part 1 succeeded, I'll now offer up Part 2, a look at two interesting taxa from the family Globigerinidae.  This family contains most of the taxa that we associate with the idea of "planktonic forams", perhaps due to our familiarity with the "globigerina oozes" that form a significant part of the floor of the modern world oceans.


    Globigerinoides ruber (d’Orbigny, 1839) is one of the two “red” species of globigerinids, as the specific epithet indicates.  It is well-known that the color of individual specimens varies from white to pinkish-red, and it is typically the case that only some of its globular chambers exhibit the red coloration.  I have specimens with all white chambers, one red chamber, two red chambers, etc., and have a single individual that is all red.  Interestingly, the intensity of the color seems to increase with the number of chambers affected, so the all red specimen is very red indeed -- it is also a little smaller than average.  Here is a typical specimen seen from the umbilical side, in a slightly oblique view, showing the primary aperture and one red chamber:




    The genus Globigerinoides differs from Globigerina in that its species exhibit secondary apertures, formed at the junctions of the spiral suture with intercameral sutures:




    Here is the spiral side of the same specimen, again presented in an oblique view, with two supplementary apertures, two red chambers at the left, and a pale pink one at the right.  The top, final chamber is white, as is most frequently the case.  This taxon is the commonest foram in the sample, by a large margin. 


    The other red globigerinid is Globoturborotalita rubescens (Hofker, 1956).  According to the World Foraminifera Database, it also occurs in the Gulf of Mexico, but I have seen no specimens in my sample as yet.  This taxon shows four chambers in the umbilical view, rather than three, and lacks the secondary apertures.


    A second interesting globigerinid, quite different from the preceding, is Globigerinella siphonifera (d’Orbigny, 1839).  This genus exhibits planispiral forms, rather than trochospiral -- all of the chambers are in the same plane.  (Actually, the test begins growth in a trochospire, but quickly switches growth pattern to planispiral.)




    There is a primary aperture at the base of the final chamber, and in fully mature specimens like this one, the initial chambers enter the final one through the primary aperture:




    The final chamber appears to be “gobbling up” the initial chambers, like the snake that swallows its own tail.


    In Part 3 of this entry, I’ll examine three taxa from the Family Globorotaliidae.  Stay tuned.......




  5. Paleo-Profiles

    • 1
    • 3
    • 910

    Recent Entries

    The modern sperm whale Physeter macrocephalus (which means "long-headed blower") has been celebrated and feared in classic literature, often being depicted as ruthless ship-destroyers, most famous of these literature was Herman Melville's novel Moby Dick. But fossil discoveries in the early 2000s beg to differ, revealing a massive leviathan as big as the sperm whale but with powerful and gigantic jaws spawning teeth bigger than a human arm and an appetite that would make Moby Dick resemble a minnow. A whale that would wreck ships for sport rather than defense, its name was Livyatan melvillei, a name-worthy leviathan that must go down in history as the largest and most powerful tetrapod macropredator of all time.



    Illustration by Teratophoneus



        Livyatan melvillei literally means "Melville's Leviathan", which easily suggests that L. melvillei was named in honor of the novel Moby Dick. The genus name uses the literal spelling of the Hebrew word לווייתן (livyatán) in reference to the nickname leviathans commonly used on whales, especially from Moby Dick according to the namers, although the Leviathan was also a legendary sea monster from the Hebrew Bible (However, the english spelling leviathan was originally used, but was later discarded due to the name already being taken). The Latin species name melvillei was named after Moby Dick author Herman Melville.

       Although unnecessary, the genus name can be broken down even further to the original meaning of לווייתן (livyatán), which literally means "wreathed" or "twisted", thus making the most literal meaning of L. melvillei be "Melville's wreathed".



        For over a century, gigantic teeth whale teeth, some claimed to reach lengths of 40 centimeters, have been found all over South America, most notably Chile and Peru (and according to some sources California, but there is no deeper explanation to this). In November of 2008, a team of international scientists uncovered a 75% complete skull of a giant cetacean in the Pisco Formation of the Cerro Colorado desert in Peru (In an interview, the scientists remarked that they found the skull at the very last day or their trip upside-down and broken up). Taken back to Lima for examination, it was deemed a new type of cetacean and was given the taxon Leviathan melvillei in their papers published two years later. However, quickly after publication it was pointed out that the genus Leviathan was already a synonym for a mastodon. Because strict taxonomy rules do not allow any name to be used twice (Even if the already existing name is a synonym), the genus was renamed to Livyatan.

        In 2016, a fossil enthusiast Murray Orr discovered a giant 30+ centimeter tooth off the shores of Beaumaris Bay near Melbourne in Australia. Realizing that this find may be important, he quickly contacted the Victorian Museum, where it was discovered that the tooth was indeed important and belonged to that of Livyatan. Although the morphology of the tooth itself is identical to that of L. melvillei, it is pointed out that Beaumaris was a Pliocene-age formation and thousands of miles away from Peru, suggesting that Livyatan or possibly just L. melvillei was much more diverse and existed much longer.



    Total Body Length

        Because only the skull has been discovered, the rest of L. melvillei's body -and size- is still yet to be debated and thoroughly confirmed. As of now, two other physeteroids have been officially to determine the size of the L. melvillei holotype, with a third one used by some. In general, the total body length is generally said to be up to 18 meters in length.

        Using the modern sperm whale as reference, the total body length of the holotype was calculated to be 13.5 meters long, making it somewhat a bit smaller compared to modern whales. However, P. macrocephalus is unique for having a elongated head and a shorter body compared to other physeteroids, and because of the shorter, more robust form of the L. melvillei holotype skull, it may not be the most accurate reference. The P. macrocephalus reference is commonly used as the lower estimate of L. melvillei

        Another, more closer relative with a fully complete skeleton known, Zygophyseter varolai, can be used as reference to yield a much larger and impressive 17.5 meters, which rivals the length of P. macrocephalus itself. Because of L. melvillei being more closely related to Z. varolai than P. macrocephalus, plus the unusual and unique body dimensions of the latter, this estimate is probably more accurate than the lower 13.5. Many in the science community and media simply round the estimate to 18 meters.

        A third, but unofficial reference what was once frequently used is Brygmophyseter shigensis, which is known from a near-complete skeleton. A paleoartist referenced the body of the B. shingensis holotype to the L. melvillei skull and calculated a length of 15.4 meters. Although this estimate may be credible and can be seen to be used with other paleoartists, it is not an official estimate and is largely unused by scientists.

        However, it must be remembered that these size estimates are only based on the holotype, which is the only non-tooth specimen currently found. This means that it is very possible that L. melvillei could reach larger sizes. In fact, isolated teeth already may suggest larger sizes. In a twitter post by one of the scientists in possession of the Beaumaris tooth hinted that it came from an 18-meter Livyatan and was may have even been a subadult. A gigantic Chile tooth from the same post was estimated by someone to come from a L. melvillei that grew to 21 meters long (Using credible tooth/body length ratios).



        L. melvillei was a physeteroid, but unlike other raptorials, had a large, box-shaped head. While this feature is common in other physeteroids, it should be noted that the other raptorials with known skulls, Zygophyseter, Brygmophyseter, and Acrophyseter, all had smaller heads and a snout which resembles dolphins, while L. melvillei does not. This is because the holotype skull shows the supercranial basin curving to the end of the skull like that of P. macrocephalus, while the others have their supercranial basins limited to the face, thus creating their snout.

        With a giant supercranial basin, this means that L. melvillei had a massive supply of hypertrophied tissue (spermaceti and melon), suggesting that the whale possessed some abilities. The large spermaceti was a trait that was theorized to possible explain P. macrocephalus's ability to dive deep, suggesting that L. melvillei too, had the ability to dive deep. But with L. melvillei being more possibly a surface hunter, another, more accepted usage would be advanced echolocation as seen in P. macrocephalus. Another possible usage would be ramming, which is also a behavior P. macrocephalus has been seen doing. Although the two whales have very similar traits in the morphology of the head, this does not suggest that they are very closely related to each other, as the traits are merely a result of parallel evolution.

        As the L. melvillei holotype only consisted of a skull, the morphology of the rest of the body is unknown. Multiple theories of the body plan have circulated, but the most accepted one is a large and robust body, as hinted by the small but robust skull, and based on the other raptorial sperm whales, which all have a similar body plan of a small, robust head and a large body.

        L. melvillei, like all raptorials, had functional teeth on both jaws. With the presence of functional teeth in the upper jaw, it shows that L. melvillei was macropredatory. The teeth also grow up to 36 centimeters, being the largest functional teeth in the animal kingdom (tusks are considered teeth, which are obviously larger, but they are not functional for eating and do not count). Having such large teeth, it has been suggested that L. melvillei probably also had a powerful bite force to deliver a more deadly blow to its prey. Your hand would merely be squashed by a tooth of L. melvillei if it were ever to bite it! With all of these features, it all points to the conclusion that L. melvillei was an efficient apex predator, which hunted whales, sharks, and anything else it could grab.



        L. melvillei's preferred prey is believed to be animals up to 10 meters in length including large whales, sharks, and other large animals. Because all the animals L. melvillei prey on lived by the surface, it meant that it was a surface hunter. Currently, it is believed that L. melvillei would attack from below, diving deep to gain momentum, then accelerating up and ramming the victim, stunning it before the jaws deliver the kill. Unfortunately, there is currently no fossils with feeding marks left by L. melvillei, so the current theories are based on the morphology of L. melvillei alone. 

        With the data of the skull morphology along with the continuous pattern of the hunting methods of large ocean predators, we can draw an image of how exactly L. melvillei could have hunted- A lone 6-meter Cetotherium cruises alone at the shore, away from the safety of a pod. Nearby, a hungry 18-meter L. melvillei senses prey through its echolocation and draws closer. Seeing the whale, it quickly descends as the Cetotherium obliviously continues to swim on. Having swum deep enough, the L. melvillei then rushes towards the whale, increasing speed every moment until its strong head rams into the Cetotherium's underside, sending both into the surface and quickly fall back in the water. Suffering major broken bones in the ribs, tail, and spine, the unconscious and paralyzed Ceototherium sinks hopelessly as the victorious L. melvillei turns back towards the dying whale and bites it, driving its 30 centimeter teeth deep into the flesh and destroying the vital organs, putting the Cetotherium out of its misery. The killer has won its meal, and what was left of the victim sinks to the bottom of the ocean, resting on the ancient seabed as nourishment for any lingering scavengers.



        The L. melvillei holotype was dated 9.9-8.9 million years old. Isolated teeth from other parts of Peru and Chile show a temporal range of 11.6-7.2 million years, and the Beaumaris tooth extends it further to 5 million years ago. The temporal range based on South American examples sits right during a golden age of cetaceans- the diversity of mysticetes and odontocetes alike are seeing its highest level of diversity. Moreover, fossil records show mysticete population being the highest in Peru and Australia, right where L. melvillei fossils have been found. In fact, this pattern of L. melvillei teeth being found in the greatest cetacean hotspots suggest that it was a specialized hunter, designed to thrive in overpopulated oceans and could afford to evolve huge builds backed by such a fertile supply of prey (Hence, L. melvillei was the largest macropredatory tetrapod).


    Diversity of mysticetes. Original graph by G. Bianucci (University of Pisa).

        However, the appearance of L. melvillei during this time is still a wonder, because around this time the giant shark Carcharocles megalodon was already the apex predator of all seas. What's even more amazing is that not only did the two coexist, they also hunted the very same prey. In most situations, the pure pressure of competition would have an environment only allow one apex species, but the appearance of two equal apexes proves that there were so many whales at the time that the competition levels wouldn't strain if another one appeared. If the cetaceans were less diverse, then L. melvillei or even C. megalodon would not have existed, because it was only to the huge supply of prey that allowed them to evolve a build that requires immense amounts of eating. But it seems that L. melvillei might have been too reliant on mysticete overpopulation, as the former only appeared in areas of the highest mysticete concentrations (Western South America and Australia), while C. megalodon had a cosmopolitan distribution. This could be because the sheer size of L. melvillei was relatively huge for a hypercarnivorous mammal. Mammals, being warm-blooded require more metabolism than cold-blooded animals for the extra energy to be able to regulate its body. (While the largest animals are indeed mammals, they have easy access to food while macropredators need to hunt evasive animals which require more energy. It's no question that the largest hypercarnivores today are relatively small compared to those from past times. The advantage of being small is that you don't need as much metabolism as bigger predators and can easily adapt to a sparsely populated environment) This is no exception for L. melvillei. It's possible that the reliance of such a huge population of prey restrict their distribution to the most populated areas, and any other place with less population of cetaceans will provide too little prey for a bulky 18-meter whale to survive in.



        Due to such a poor fossil record, it is unknown when exactly L. melvillei went extinct (There is an accepted temporal range, but abnormal examples like the Beaumaris tooth are constantly changing it), but we do know that it arose during the high-tide of whales during the Miocene and vanished sometime during the Pliocene or later.

        During the Pliocene, a major cooling in the earth's climate occurred which created the modern-day polar ice caps. With much of the waters once warm becoming colder, it led to a chain reaction of mass extinctions. An estimated 36% of Pliocene genera went extinct. This is also when mysticete population saw a huge drop in diversity, with more than 13 different genera disappearing. Because of L. melvillei's dependence and overspecialization on such a huge population of whales, a drop in numbers could essential kill off L. melvillei via starvation, let alone the disappearance of almost half of all mysticetes.

        The Pliocene also gave rise to a new group of hypercarnivores- raptorial dolphins (Orcininaes). Although having been living in the shadows of the huge L. melvillei for millions of years, they have proven to be successful even with a drop in marine diversity. With these intelligent predators proving their success in a short period of time, there is no reason why they would not have pressured even more competition onto L. melvillei. With the latter being so overspecialized for an overpopulated environment, it failed to adapt to a sudden drop in prey unlike the former, who were versatile hunters able to adapt to most changes, and quickly went extinct. Raptorial dolphins, on the other hand, still exist today as the ocean's apex predator and remain unthreatened as a whole species.



        L. melvillei currently does not have a stable place in the phylogenic tree and is still deemed incertae sedis like all other raptorial sperm whales. When the first raptorial physeteroid B. shingensis was known to the public in 1995, it was unlike any cetacean, with a physeteroid-resembling body but with raptorial jaws not seen by any before. Even after the discovery of the other known raptorials during the early 2000s, we still don't have enough knowledge to make an exact placement, although we do have a basic idea of where they would go into. L. melvillei is currently a unique physeteroid, sharing no direct relatives (subfamilies), although its closest relatives are the other raptorial physeteroids Zygophyseter and Brygmophyseter.


    Cladogram by G. Bianucci (University of Pisa). L. melvillei is spelled Leviathan.



    -Lambert, O., Bianucci, G., Post, K., Muizon, C. D., Salas-Gismondi, R., Urbina, M., & Reumer, J. (2010). The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature, 466(7310), 1134-1134. doi:10.1038/nature09381

    -Fang, J. (2010, June 30). Call me Leviathan melvillei. Retrieved from https://www.nature.com/news/2010/100630/full/news.2010.322.html

    -Lambert, Olivier; Bianucci, Giovanni; De Muizon, Christian (2016-09-01). Macroraptorial sperm whales (Cetacea, Odontoceti, Physeteroidea) from the Miocene of Peru. Zoological Journal of the Linnean Society: n/a–n/a. ISSN 1096-3642. doi:10.1111/zoj.12456.



    Purple text uses unofficial but possibly credible sources. These can range from accurate calculations by random people online to paleoartist's opinions on morphology. They may or may not be accurate, so you must see for yourself.

    Red text uses speculation. Do not take any red text seriously unless you believe it may be credible.

  6. I had a good weekend on the river this past Saturday and Sunday. I did some fishing and scouting for new dig spots. I have yet to find my own place where 1. no one else knows/digs that I am networked with 2. that produces decent quality and OK quantity. Saturday evening that was checked off from my fossil hunting bucket list, though. I plugged down the river in my lil 14' jon boat, saw some shells atop a bank that looked familiar to the fossil pecten in edgecomb county and made a quick dash to the shore! I had quite the struggle among the brush and trees between myself and these barely visible shells - but I made it, grabbed a very nice C. madisonius with some little barnacles atop of it. As I'm climbing down I spot something embedded in the rock/hardened clay and got so excited I literally laughed out loud. MEGLADON TOOTH!  -This I was not expecting, but welcomed! I pried it out, really neat color and sadly chipped away about a third - but still in good condition and a promising sign as I looked around and also found two beautiful little great whites almost pearly white! Such unique colored teeth for this part of eastern NC as normally my finds, like GMR, are darker grays and blacks and then you have the aurora teeth and hour east that these appeared more like in color but still different. I would love to know the minerals responsible for this coloration here. Anyhow, I returned with my Good digging partner, Rick, Sunday and we found a few more things that were alright. More to explore - more to come I'm sure! 






  7. A Novice Geologist

    • 1
    • 1
    • 1059

    Recent Entries






    Toby (my 10yo son) and I at the site for a group #BlackFriday #Fossil hunt #optoutside #outddoorresearch, Nov 25, 2016

    There's a particular creek/ditch site my son and I like to frequent. It's not the easiest site and not always as productive as we'd like, but it's a good site nonetheless. I've been studying the stratigraphy to better



    understand what could be there as I get to know the species of the fossils we find. We have found a number of things from micro shark teeth like tigers, to bigger items like rib bones and other bone frags, various


    Partial whale/dolphin skull

    vertebrae from sharks and fish, marine mammal teeth and bones, and more. I've even consulted one of the paleontologists at the College of Charleston, where I'm studying to become a geologist. It appears to be Chandler Bridge and I'm looking into what is underneath it (what we walk on in the creek). It's super hard and I was told by more seasoned hunters yesterday it's likely either marl or limestone. This would be consistent with our finds and with the idea of a marine/estuarine environment. It would be interesting if the marl/limestone underneath is Ashley formation, though. That would mean we are a bit older in the timeline than thought. Chandler Bridge is late Oligocene (~23-24 mya) and Ashley is early Oligocene (~26.5-30 mya). The top section of the site has a lot of artificial fill, however, so there is no telling where it comes from. After storms I have found a huge mako and huge Angustidens tangled in the roots only a foot or two from the surface so it had to be artificial fill.


    Odontoceti tooth


    Rib bone


    However, lately when we go we've seen something pretty horrible going on.


    Normally, the fossil hunters we encounter are good, honest folks. They are hunting for personal collections or to make some money and are pretty good about taking care of the sites they hunt at. After all, if we do not take care of these sites, they will be destroyed and stop producing fossils. There's the logos of the matter, right? There is also the logic that if we destroy sites, that are public lands, those that administer and care for them can shut us out, much like the town of Summerville was compelled to do. It is my understanding that some fossil hunters were so - um, "enthusiastic", shall we say - about their hunts, that they were digging into banks (which I usually refer as creek and ditch walls as many are very steep and deep) that they were breaching private property lines and risking other people's properties. So basically, just take care of the sites and they will take care of you. Makes sense, right?


    Well, guess what, folks - it's happening here.



    One of the several dig outs I found




    Looking for micros despite the fall

    When I first went to this site in about Aug/Sept of 2015, I had spied it on Google maps as a new fossil hunter (and am still quite the novice). Another experienced hunter told me it had promise but was a site he didn't like to go to for various reasons. I decided to give it a go. I went alone as I tend to do when checking out a new place I'm unfamiliar with. I'd rather not have my child with me in such a scenario. When I arrived, I walked to the edge of the creek bank and my use of the word "wall" couldn't be more appropriate. It was a nearly 90 degree vertical 15-20 foot wall to the bottom. I found a spot with what I thought to be some decent hand and foot holds and started my climb down. However, when I put my full weight on the foot holds, the wall gave out and fell straight to the bottom. I was pretty scraped up from the thorny flora overgrown on the wall but didn't break any bones, so I went ahead and did my little fossil hunt for a couple of hours only coming up with some micro shark teeth. I would later learn that I had a blown disc in my neck. See, I already had one fusion in my neck about four years prior to this and apparently a disc below that fusion had herniated. I suspect, though admit it is only conjecture, that this fall caused the disc to give out because I began to have symptoms just after this fall. While conducting my hunt on this particular trip out, I saw that people had been digging into the bottom of the wall and wondered if I had been climbing above such a spot, which caused it to give out when I tried to climb on it.


    It was some time before I returned to that site, in part due to the fact that I was diagnosed with that blown disc and required surgery in December 2015 to fuse more vertebrae. It was disheartening. I can only have one more fusion and I'm only 39 years old. It's depressing to think about. Therein lies my pathos. Many people have other various emotions tied to fossil hunting and how to go about it. I've found it to be a very charged subject, for sure.



    Black Friday 2015 there was a group hunt. I was going to join them, however I had just received that diagnosis of a blown disc and didn't want to risk further injury. I gave the organizer of that hunt the location and warned about the difficulty I had getting to it. I had also let him know that there was a massive wash out in one part because of the "Thousand Year" flooding in October 2015 (I may write another blog on why that phrase was massively misused). Apparently, there were some really cool finds, or a really cool find there, so after my recovery, I went back. I went with my son and it was overall uneventful - no falls thankfully.





    Angustidens teeth I found that day

    I did find a nice Angy (and a second at another site) but then we only found a couple of micros. We met and conversed with a seasoned hunter that IIRC was there with a group he brought on a hunt tour. There was a lot of digging but nothing that seemed very destructive and certainly nothing that was undermining the slopes that would cause them to fail. We chatted and I learned a few things. It's always nice to talk to people that have been doing this for so long.


    Angustidens teeth I found that day


    Later, in I believe April 2016, I took a friend of mine on his first fossil hunt and he killed it! The Odontoceti tooth and the rib bone above were among some of what he found there that day. The water level was low compared to the previous times I had been there and he's pretty adventurous, so we went places at that site I had never been before. We also found a spot to climb out of and now, Toby and I use it to get into the creek. It's not steep at all and it's not as deep there either.


    Well, I've only been twice since I started at CofC in August and that has been this month, November 2016. We've had some great finds, especially since the water is really, really low (we've had nearly no rain at all since Hurricane Matthew hit in October). However, the practices that are being used by one or more people at this site recently leave utter destruction. I'm not exaggerating when I say that either. It was so bad when we went yesterday for the group Black Friday Hunt that the creek was almost blocked off as both banks had been horribly undercut and the rubble nearly met in the middle of the creek.


    This isn't a natural erosion process. This is clearly the work of a human or humans; you can clearly see the shovel marks in the bank. This is far worse than even the dig outs that I witnessed when I first was here that caused me to fall and blow a herniated disc last summer!



    What may be another real kick in the pants is that this undercutting is not well understood by me as they are not sifting what they are leaving behind. We have even pulled micro tiger shark teeth out of the huge chunks of rubble they left behind. It's confusing and I don't understand it. I can only assume they are looking for very large teeth. The biggest I've found are 2-2.5 inch Angustidens. There are no megalodons that I've ever seen and Angies and Megs are not in the same time period. Angies lived in the Oligocene (appropriate for Chandler Bridge and Ashley formations) and megalodon lived during the Pliocene and Miocene Epochs. As far as I know, they did not overlap so there shouldn't be any megs here, especially if this is closer to the Ashley formation than I thought.


    This undercutting is extremely destructive and dangerous! It will cause these slopes to fall and the banks will wash out again after we have heavy rains. Maybe that is what the person/people doing this hope to achieve? However there is a massive flaw in that thought process. Several, actually. 20161125_114645.jpg


    First off, it will cause other fossils to be lost. I get it, people want the big boys. They want 2-3 inch Angies, they want big whale teeth, they want full skulls - but by doing this, when it rains, when this slope fails and collapses, all the other fossils will be washed away, the likelihood of finding any "big boys" will still be slim, more sediment will be in the creek covering the fossils that are settling and being deposited by the water in the bottom of the creek (where we have found our great finds, by the way), and you are destroying the area.


    This may very well get tools and digging banned everywhere we hunt. Then what? What will you do then?  I hope you are reading this. I hope you are hearing what I am trying to say. I get you probably don't care for the environment as much as others but I hope you hear your bottom line shrinking. As the people that live there start to see this, they may very well go to their city and county councils and follow Summerville's model. Or they may go with what other area's outside the Lowcountry have done and ban hunting altogether.  And that is sad. There are not enough paleontologists here to find all that needs to be found. Whether they are in people's personal collections, up for sale, or being donated to museums, it is far better that people are out finding fossils and bringing those bones to the light of day than for them to remain covered for the world to never see again.


    Here comes the ethos: no matter your philosophy there should be the inclusion of proper care of the sites where you hunt. If you dig into the banks/walls of creeks and ditches, please consider slope failure in your process. Remember that other people use these places and a slope failure can harm, even kill people. There are massive crevasses in the slopes now and cracks appearing in the top where people walk and ride 4x4 vehicles. There may be service vehicles accessing this dirt road as well. This is extremely dangerous! Aside from that, destroying where you hunt will not provide better fossils. It will close off the site and keep fossils buried in the rubble that is left behind instead.



    View from the top of the bank - you cannot even see the slope has been undercut

    When you sift gravel, make sure live creatures such as fresh water claims and dragonfly nymphs are immediately returned to the water. After sifting, if you toss the gravel onto the bank, please return it to the water after you are done for the day. How can the gravel capture more fossils from the water if it's sitting on the banks? 


    Aside from those smaller creatures we have also encountered deer, snakes, and seen evidence of dogs, raccoons and other animals. Remember this is their home. Please, respect that. Destruction of their habitat will affect how they survive (such as relying more on going towards human homes for food sources). If we tread more lightly and leave their ecosystem in tact, they can keep their own food sources and shelters without needing to encroach on ours. And please, for those that don't understand, it's not necessary to kill a snake just because you see it. Snakes will prefer to escape so give it that chance to get away. You will be fine. 


    I know this has been a long read and people prefer short status updates instead. But this couldn't be condensed more. I'm a somewhat "wordy" person and am working on trying be more concise; however, this had several points of view. People fossil hunt for many different reasons and I hoped to appeal to everyone's points of view without making it sound like this is how all fossil hunters behave. We don't. This destruction is caused by one person or a very few number of people. But the rest of us need to make sure we are educating people about why this sort of destruction is unnecessary and uncalled for. I am not trying to be rude, "holier-than-thou", or trying to offer a lecture (though I clearly have). I just wish to inform. I hope that I have. Please feel free to share and comment. Thank you. 

  8. Hey everyone!

    Sorry it has been so long since I last posted.  I have been so busy with school, family life, and lots of technical problems.  But I finally was able to finish my video and I am so excited to share my work with all of you!  

    This video is about my latest fossil cleaning, It is my favorite trilobite to date! It is actually a complete body fossil, not just a shell, or a piece of one.  I did learn a few new things this time.  I had some trouble with this one because the air scribe I have is not not suited for microscopic fossils, which is what I am cleaning up.  Because of this I ended up damaging my fossil.  A technique I am trying is to find the edges of the fossil and clean them out before I clean out the middle of the fossil.  I am doing this because the air abrasive is basically a s sand paper in air form.  The top of this trilobite is quite detailed, if I cleaned up the detailed section first it would leave it open to be hit by unintentional air abrasive and thus damaging it.  So I left the top to be done last.  This seemed to work well.  Which is pleasing.  Watch and see how it all turned out!


  9. A topic early last year in the Fossil Forum asked “What are your goals for 2015”. My response in that discussion was a desire to collect from the Duplin Formation in South Carolina to expand upon the species list within my Pliocene Project. Although I did not have the opportunity to bring those specific goals to fruition, I did add significantly to that list with unplanned collecting trips to two sites exposing the Golden Gate Member of the Tamiami Formation containing a number of species not found within the Pinecrest Member further north. However more so than any other unit that I sampled in 2015, was the unexpected opportunity to collect from several localities exposing the Lower Pleistocene (Gelasian) Caloosahatchee Formation. As I have previously reported the Caloosahatchee contains a mostly tropical fauna containing many endemic mollusks which lived within the flooded Everglades Basin following a 200,000 year sea level regression marking the end of the Pliocene Epoch.

    My previous collecting endeavors in the Caloosahatchee had been restricted to the western portion of the Everglades/Big Cypress region and the trip that I attended in January 2015 organized by the Conservancy of Southwest Florida followed that trend with a visit to a quarry in Charlotte County (Fig. 1). The mine contained massive spoil piles of shell rich material excavated years ago that had undergone heavy weathering. As a result the large well preserved gastropods which the Caloosahatchee is known for were lacking although the weathering did reveal many of the smaller species not commonly looked for by most collectors.

    blogentry-1906-0-22011700-1466113898_thumb.jpg blogentry-1906-0-56672200-1466113880_thumb.jpg blogentry-1906-0-08847500-1466115159_thumb.jpg

    Figure 1. Locality 1039. Charlotte County, Florida.

    Throughout last year I conversed with several forum members and messaging with Dozer Operator (Thanks Jonathan!) finally led to a collecting trip to the eastern half of the everglades. Unlike the incredibly hot trip with FossilDAWG and jehussey the previous week, Tropical Storm Erika was moving offshore of the Florida peninsula ensuring a wet but more bearable day in the field. Navigating heavy rain squalls with the use of Jonathan’s weather phone app, we were able to miss most of the precipitation and visited among others that day two sites exposing the Caloosahatchee Formation. The first in Martin County east of Lake Okeechobee contained primarily Caloosahatchee material with some overlying Middle Pleistocene Bermont Formation from which I was able to score examples of the larger mollusks that the Caloosahatchee is known for while Jonathan collected some interesting vertebrate material probably originating out of the Bermont (Fig. 2). The second stop further south in Palm Beach County contained equal amounts of Caloosahatchee and Bermont sediments (Fig. 3).

    blogentry-1906-0-12526200-1466113430_thumb.jpg blogentry-1906-0-13916100-1466113448_thumb.jpg blogentry-1906-0-37303200-1466114638_thumb.jpg

    Figure 2. Locality 1045. Martin County, Florida.

    blogentry-1906-0-36689300-1466113478_thumb.jpg blogentry-1906-0-28070900-1466114682_thumb.jpg blogentry-1906-0-35181300-1466114702_thumb.jpg

    Figure 3. Locality 499. Palm Beach County, Florida.

    blogentry-1906-0-04191300-1466112952_thumb.jpg blogentry-1906-0-15292400-1466112951_thumb.jpg blogentry-1906-0-10457900-1466112953_thumb.jpg blogentry-1906-0-94574900-1466112949_thumb.jpg blogentry-1906-0-07294100-1466112954_thumb.jpg

    Figure 4. Some gastropods from the Caloosahatchee Formation of South Florida.

    Both sites particularly the latter, demonstrate the difficulty in identifying fossils within the Florida Plio-Pleistocene. Each of the shell bearing units in South Florida contain endemic species found only within designated deposits, however as seen in my Tamiami Gallery a number of molluscan species survived into recent times as well as some which persisted past the Upper Pliocene but becoming extinct later prior to the Holocene. Adding to the confusion are non-peer reviewed works which have taxonomically split new species based upon the unit and/or geographical region placing much emphasis on slight phenotypic variation. In the list below, I have attempted to be as accurate as possible in assigning species that belong in the Caloosahatchee, however short of in-situ collection there could be species particularly those collected from locality 499 that could have originated from the Bermont Formation. In addition, the below list also is the first that I have produced using marine invertebrate taxonomy as presented by the World Register of Marine Species (WoRMS) . This includes bivalve taxonomy proposed by Carter et. al., 2011 and gastropod taxonomy from numerous researchers. As shown in the list, not all of the gastropod families have been assigned to specific Orders and are waiting further study and DNA analysis. I will be applying the same classification to my other Plio-Pleistocene faunal lists as I update them in future posts.

    Caloosahatchee species list 040416.pdf


    Joseph G. Carter, Cristian R. Altaba, Laurie C. Anderson, Rafael Araujo, Alexander S. Biakov, Arthur E. Bogan, David C. Campbell, Matthew Campbell, Chen Jin-hua, John C. W. Cope, Graciela Delvene, Henk H. Dijkstra, Fang Zong-jie, Ronald N. Gardner, Vera A. Gavrilova, Irina A. Goncharova, Peter J. Harries, Joseph H. Hartman, Michael Hautmann, Walter R. Hoeh, Jorgen Hylleberg, Jiang Bao-yu, Paul Johnston, Lisa Kirkendale, Karl Kleemann, Jens Koppka, Jiřź Kříž, Deusana Machado, Nikolaus Malchus, Ana Márquez-Aliaga, Jean-Pierre Masse, Christopher A. McRoberts, Peter U. Middelfart, Simon Mitchell, Lidiya A. Nevesskaja, Sacit Özer, John Pojeta Jr., Inga V. Polubotko, Jose Maria Pons, Sergey Popov, Teresa Sánchez, André F. Sartori, Robert W. Scott, Irina I. Sey, Javier H. Signorelli, Vladimir V. Silantiev, Peter W. Skelton, Thomas Steuber, J. Bruce Waterhouse, G. Lynn Wingard and Thomas Yancey. 2011. A Synoptical Classification of the Bivalvia (Mollusca). Paleontological Contributions (4):1-47. 2011

  10. Pondering on Dinosaurs

    • 1
    • 0
    • 3637

    Recent Entries


    Welcome to the first entry of my dino blog! I figured for the first entry I should do something exciting and personal to me, so I'm doing a face-off between my two favourite dinosaurs: masiakasaurus and noasaurus! These two dinos are roughly the same size and are the two smallest abelisaurids found so far. Before we get into the match-up, lets look at some stats and figures for the reptiles themselves.

    First off we have masiakasaurus, a piscivorous dinosaur with long, outward jutting teeth designed to capture and make sure any fish caught can't escape. Its arms had to be strong in order for it to hold on to its wriggling and squirming prey, and it's fingers end with hooked claws that would latch onto any fish snatched from the riverbank. It was 5.6 feet long (2 metres) and definitely is a strong and deadly competitor.

    Now we have noasaurus, an abelisaurid that closely resembles the maniraptorans, for the killing claw on nova's hands was originally thought to be based on it's foot, like a raptor. Noasaurus was an active hunter and could reach blisteringly fast speeds, presumably using similar hunting techniques to deinonychus and velociraptor- going for the soft, fleshy part throat of the animal. This abelisaur was 7.9 feet long (2.6 metres) and will definitely prove more than a match for masiakasaurus.


    This fight would probably only happen if noasaurus' hunting grounds started to clash with the section of the river masiakasaurus hunts by. As rivers generate a large amount of noise, noasaurus would definitely gain the advantage as it snuck up on masiaka, who would be facing the river, searching for prey. Noasaurus' first move would presumably to lunge from behind onto masiakasaurus' neck, attempting to get a killing strike in with the claw on it's hand. This move would likely push them both into the river (dinosaurs are pretty dumb, so noasaurus wouldn't have planned for that to happen!) where masiakasaurus would gain the advantage. It's outward jutting teeth would have to be strong to hold staring and thrashing prey, but they just weren't suited for attacking other dinosaurs. The hooked talons on it's hands, however... As masiakasaurus lacks hunting and attacking instinct, it would probably throw some wild slashes at the lightly built noasaurus, who would be struggling to keep it's snout above the water. Masiakasaurus would probably have experience from falling in to it's hunting grounds, and so would be prepared to get out. And as masiakasaurus would escape the confines of the water, the blood and gashes from the battle would attract some other aspiring aquatic predators. The poor, drowning noasaurus would presumably be finished by a crocodile of some sort or, once it drowned, scavenged by some smaller, predatory fish. So, in the end... MASIAKASAURUS WINS!

  11. Micropaleontology blog

    • 1
    • 4
    • 3538

    Recent Entries

    Latest Entry

    Please read this section before continue in this blog

    Currently this blog only contains my personal information on:

    1- micropaleontology of a section in Iran (Arak) which described here. (in website gallery only images+microfacies- complete refrence is in the excel file)
    2- some palynological works
    you probably fisrt should download the following:
    - Map of the area: http://wikisend.com/download/391330/Map-final.jpg
    - Excel file for the complete refrence(Farsi Refrence is more complete):
    Notice that:
    - pictures of thin sections are only samples and sure you can't get much information from there. in proper time i will put better images.
    - whole content is only for educational purposes and also mistakes happens all the times :D
    - Contents might get updated anytime

    • 1
    • 7
    • 3961

    Recent Entries

    Some Background: I was already somewhat familiar with the idea that one had to have a license to collect certain fossils. As a child, I'd spent enough summer days at Kelly Rock Springs to find the occasional 'other fossil' in addition to the plethora of shark teeth usually found. These other fossils would get enjoyed for the afternoon and then left behind. I never found anything particularly impressive, I needed glasses but couldn't be bothered to wear them around water and thus really couldn't see anything. One day though, a friend of mine found a fantastic large tooth, mastodon or mammoth. Watching him relinquish that tooth to an adult collector with the proper license reinforced the necessity of having the appropriate licensing. Of course, at that time, I would have needed a parent to sign me up and they weren't overly interested. I couldn't blame them, they were busy.

    Licensing and Legalities: I'm a chicken. I can't help but feel I should get that out of the way first. I spend hours reading before trying pretty much anything. The first thing I searched for was where to apply for a license to collect vertebrate fossils. I sent in my application and a short two weeks later received back my fossil collecting license. Here in Florida, the license is just for vertebrate fossils collected on state land. Collecting of human artifacts is prohibited. Shark teeth are thus far excluded from any licensing requirements. The license carries with it the obligation to report back all findings before renewing the license at the end of the year. Sixty days from the date of reporting, the fossil ownership reverts to me if the state decides they don't need the fossil.

    Deciding where to hunt: This has been a tougher question. I will be taking my 5 year old daughter with me and feel uncomfortable taking her to some of the better fossil locations. Most of the good locations here in the state of Florida are in freshwater rivers which also happen to be the location of gators. That pretty much leaves us with beach collecting. If we join a club, perhaps one of the mine field trips which allow children. In the meantime, another option has availed itself.

    Fossil hunting from the comfort of home: I'm trying not to make a nuisance of myself in the forums. I read until I think my brain is as full as it can get and then take a break. I try not to respond as I don't yet have anything of value to add to the conversation. Thanks to this forum, I realized that there aren't just regular sized fossils out there. There are tiny fossils too. In a fantastic stroke of luck, I realized that the micro-fossils I liked the best are from my home state. Better yet, the forum member collecting this material is from my hometown. How's that for convenience?

    Starting out with tiny fossils: It was really difficult to resist just digging right into the bag and looking for fossils. I decided that this time I would start out organized. I ordered gem jars and tiny bags from a jewelry supply. I picked up some drug store magnifying glasses and decided to start sorting. Right away, I determined that the drug store magnifying glasses were rubbish. They made things larger, but, still blurry. I pity anyone who tries to read a newspaper with the brand I purchased. At the moment, I am picking out anything that looks sort of biological and then using my Epson V300 scanner to see if anything I've side-lined is actually a fossil. I will have to sort it all again as soon as I have a better way to view these tiny fossils.

    Imaging and Identifying: I already own a DSLR, an older Canon Rebel. Unfortunately, I still only own the kit lens. As much as I would love to justify a macro lens, I think that I will start out with a Vivitar close-up lens kit. I'm hoping that with bright enough lighting I will be able to create images decent enough for identifying fossils easily. I would really like a microscope, but, the wide range of options in microscopes has left me undecided. So far, my best images have come from the Epson scanner. I'm hoping that the Vivitar lenses and better lighting will be enough to make the Canon equal to the task. I've already found quite a few neat little fossils, but, I know that my images of those fossils aren't good enough for more than loose identification.

    In Conclusion: I'm twenty days into the fossil collecting hobby. I guess I shouldn't feel too bad that I don't have much of this figured out yet. I'm sure that most of this blog won't be particularly helpful to anyone. I'm mostly posting this so that a couple years from now when something hasn't worked out and I'm frustrated with the hobby I can look back and see that I'm a bit less of a dummy than I was when I started. <--- Yes, this run-on sentence is unforgivable, but, I am sick yet again and my 100+ fever is making me apathetic about grammar.

  12. Pterodactyl's Blog

    • 3
    • 4
    • 4967

    Recent Entries

    Latest Entry

    Today I went fossil hunting down to Denton, Texas. The weather was fairly nice with some wind. The outcome were some turrilite fragments, a ton of exogyra arietina (for selling), an echinoid, some Cetaceous/Jurassic sea floor, brachiopods and a clam.
    Some of many Exogyra Arietina


    Cretaceous or Jurassic sea floor blogentry-20385-0-08482500-1453681720_thumb.jpg

  13. TomKoss' Blog

    Well back online and on the site again. Due to PC issues and crazy holiday shifts at work was away for about a month and half. figured I'd add a few pics of stuff gathered last few months.

  14. BRobinson7's Blog

    • 1
    • 5
    • 3557

    Recent Entries

    Latest Entry

    I'm looking to plan a trip for shark teeth hunting possibly in Summerville, SC. Im currently in Pender County, NC, so Green Mile Run isnt out of the question. Any suggestions, locations or people who want to group up? Haven't had too much experience, but i've leant its the company that matters over what you find.

  15. The Community Post

    • 1
    • 4
    • 5584

    Recent Entries

    Latest Entry

    Tomorrow I will visit Mazon Creek area! I am so pumped.

  16. TyrannosaurusRex's Facts

    • 1
    • 11
    • 7873

    Recent Entries

    An enormous bipedal dinosaur believed to be able to run up to 25 mph. Sue was the largest specimen ever found measuring 40 feet long and standing 13 feet tall. She was 28 years old when she died of unknown causes possibly an injury to her leg causing her to be unable to hunt her normal prey. Tyrannosaur weighed about 9 tons. While not as long as some of the other carnivores of its time Tyrannosaurus was a dangerous beast although some believed it to be a scavenger. They lived in North America from the Dakotas to New Mexico.

    It was believed to have had feathers as a chick


    A braincase of an adult specimen. It had a large section in its brain devoted to strategy


    The growth rate of an average Tyrannosaurus Rex


    Adult skull and the skull of an 11 year old juvenile


    A track believed to be Tyrannosaurus


  17. PaleoWilliam's Blog

    • 2
    • 3
    • 1228

    Recent Entries

    I went to Post Oak Creek and found a lot of teeth. The water was freezing and my feet were numb. I recommend going there if you live in Texas. Summer or Spring would be the best time to go. For me the water levels were high but I used a sifter and found some cool things.The results were 20 teeth and a lot of shells.

  18. Stocksdale's Blog

    • 1
    • 6
    • 1173

    Recent Entries

    Alethopteris are quite common at Saint Clair location. But apparently there are at least 6 different species.

    These are all from "Fossil Plants from the Anthracite Coal Fields of Eastern Pennsylvania."

    A zip file that contains the PDF can be downloaded from http://www.dcnr.state.pa.us.

    Here's a direct link.http://www.dcnr.stat...dcnr_016425.zip

    Alethopteris ambigua


    Alethopteris decurrens


    Alethopteris friedelii


    Alethopteris lonchitica


    Alethopteris serlii


    Alethopteris sullivantii


  19. Sigmund Freud theorized that the act of collecting ties back to the time of our toilet training. Freud suggested that the loss of control and what went down the toilet was a traumatic occurrence to us human and thus in our subconscious we develop the desire to collect things as a mean to try to gain back not only control but “possessions” of that which were lost so many years ago.......

    O.K. if I tried to rephrase what I just shared in a non-academic language is that we human collect because of the trauma we faced when we couldn’t control and keep our poo poo when we were toddlers - man that sounds pretty bizarre (in a funny and entertaining way - no disrespect to Mr. Freud) while at the same time stirred my brain into thinking really deep about the purpose, the psychology and even the philosophy behind our beloved hobbies of collecting, whether they be fossils, minerals, books, etc.

    Thus in this blog, I will attempt to share my thought and theories that are my own take on this particular subject. Though I will have to say in advance before you read that this is in no way an attempt to be academic in nature - just pure ramblings for the purpose of my own amusement and if it turns out to be enlightening then all the better! So here it goes:

    **switching on psychological rambling mode**

    My perspective and belief is that collecting is an act that is stemmed from our human nature’s instinct that reacts towards “Fear” and “Uncertainty”, and there are quite several motives and psychology behind collecting that I believe support this notion:

    Fear of Mortality

    A collector collects due to a deep rooted fear of mortality and whether if you will be remembered or leave legacy after you have passed away. We can observe collectors of this type who often will go on to donate collections to public institutions or create museums to exhibit their collections. We as human (at least I believe most of us are anyway) desire to be remembered in some ways and thus our collection or what we have contributed will leave a mark in history and in essence immortalize us with our legacy which is our collections.

    Fear of Being Alone

    Some collectors start collecting as a mean to seek company of like-minded individuals who share similar passions or to experience acceptance as be part of a unique society, group and culture; for we human are social animals that instinctively seek group safety and social belongings or we become lost and terrified. This motive therefore, is also based on our fear instinct that has been implanted in our psyche.

    Fear of Non-Existence

    I think it’s probably sensible to assume that we all collect in order to know more about ourselves or to remind us of who we are, our interests, our loves, our passions and our nostalgic pasts. Thus the motive of collecting from this perspective is related to our fear instinct. For to remind of ourselves is to reinforce ourselves that we exist while at the same time reminding us of moments of happiness that make us feel alive - and those moments for collectors are the times we interact with and make ourselves surrounded by the objects of our obsessions. In addition we could say that, the act of building a collection creates a type of blueprint of our inner psyche and of a person’s life through the objects the collector acquired and cherished - the experiences the collector went through in his life. Therefore, the act of collecting is the act of painting a portrait of our life stories and our souls, through objects that speak about our love and fascinations. It reinforces our identity, our memories and our existence.

    Fear of Uncertainty & Chaos

    Collecting as a mean to create meaning to an otherwise seemingly chaotic world. We as collectors collect by gathering groups of objects that form cohesiveness or relationship between the pieces or to tell a certain story behind those naturally unrelated pieces and thereby forming meaning to the collection. Some collectors form collection in response to certain problems or sense of wonder of the chaos presented in front, and by building a collection the collector is able to tackle that problem. For example, a collector might face the question of “How can I represent the diversity of the Eocene mega fauna of North America?” (problem / chaos) and thus the collector embarks on a collecting quest to gather specimens that would build a complete collection of Eocene North American mega fauna specimens collection (solution / order). The act of collecting creates a collection that in essence, becomes the solution to the collectors dilemma. This, I would also say that is part of our deep rooted human psyche of fear of chaos and the unknown, and thus our instinct is to try to limit the chaos by creating orders (or illusions of order) to an otherwise chaotic world (in our perception at least) much in the same ways as how the early humans banded together, formed groups and created cultures or rituals to face the world’s problems or threats. Collectors on the other hands, tackle the chaos by creating order in the collection and in so doing the collector gains a semblance of power and control over disorganization and chaos.

    Fear of the Absence of Aliveness

    Collecting is without a doubt, a pleasurable pursuit for collector, whereas an audiophile takes pleasure in listening to music, food connoisseur indulges in the enjoyment food & wine, or art aficionado indulge in art appreciation and possession. We collectors induce our senses of aesthetics and pleasure from acquiring and creating collections of objects in order to feel enjoyment. In a way, this could be viewed as related to our fear instinct because we fear to not being able to feel the pleasurable pursuits in life. For we human feel alive when we experience such pleasures, whether the pleasures be from the indulgence of consumable & wearable objects or simply to possess and be surrounded by the things that give us joy like our collections.

    Fear of Powerlessness

    Collecting can be viewed as an act that I think came from our hunting instinct - to explore our sense of wonder of the unknown, to challenge the goals of acquisitions of hard-to-find objects; this in my view is in essence “the thrill of the hunt”. This particular collecting mindset is also based on our response to our fear instinct for when we hunt, we transform ourselves from being powerless prey to being powerful hunter and dominators - thus hunting (or in essence collecting) is an act to overcome our fear instinct while the “hunting” and while at the same time the journey of the hunt makes us feel alive. Also, when thinking about this motive I think it makes sense as we tend to see many collectors tend to be drawn to fossils of creatures of great power and ferocity or majestic beauty. For some collectors to possess such specimens make the collectors feel the power of those long dead creatures probably in similar manners in how hunters have trophies of their hunt to show their skills as hunters to overcome such beasts.

    Now don’t these reasons and psychology of collecting sound much more appealing than Sigmund Freud’s potty training explanation? But, before some may think that “Collecting = Fear” may seem like a degrading notion at first glance, I present to you my next theory:

    **switching on philosophical rambling mode**

    Fear of Being just another Animal - Collecting to Transcend Humanity

    Despite our instinctual fear that drives us to collect, the act of collecting is also an act of human transcendence and transformation. Some collect objects of power to symbolize the attaining of that power or the conquering of such powerful force that ultimately makes us feel more powerful than who we are without the collection. An act of collecting transform us into more powerful being (whether physically, socially, economically or spiritually): a person with no social distinction or significance can become conservators, scholars and even admired icons of historical significance. Collecting can transform the powerless into the powerful, the ignorant into a scholar, a hoarder into a curator and in many cases, turning common man into sage.

    Our fear of mortality, uncertainty and instability of our universe makes us human so special and able to achieve our transcendence from mere creatures of survival instinct into creators, innovators, artists, philosophers or sages. Thus it is the shadow that allows us to appreciate the light; the fear of death that makes us cherish the beauty of life; the brutality of our darkest side that gives rise to the reactionary opposites that make us saints, protectors and self-less beings capable of great courage and heroism.

    Therefore, even if the psychology of collecting comes down to “Our Fear of Mortality” (death with no legacy or inability to feel “alive”), “Our Fear of Non-Existence” (due to the lack of social presence, acceptance or without a group to belong); that very fear creates motives for us to have “Desire for Transcendence” into something more than what we are. Thus I would make the case that the act of collecting is both instinctual (as a reaction to our deep rooted fear of mortality & physical existence) and spiritual (as a path [and an enjoyable one!] towards transcendence of the human existence).

    **switching off philosophical rambling mode**

    My goodness after I just wrote all that, I just had an idea that the next time, when I meet people who think my collecting and obsession with eclectic objects are weird, bizarre or non-sensual, I can start quoting my philosophical ramblings that my collecting hobby allows me to transcend spiritually and start going into Zen mode - that’s should be entertaining to say the least, lol. Who would have thought our hobbies could be so spiritually stimulating.

    Anyway that’s all for my rambling for today. Hope you enjoy the blog entry :)

  20. My Blog

    • 1
    • 1
    • 4720

    Recent Entries

    Hello everyone!

    I thought i'd just make the one blog for pretty much everything that i find or want to post, rather than different blogs for different types of specimens, as i'm not a particularly busy hunter. If ever i go on a fossil hunting trip, or uncover a fossil in my back garden, then i will probably post pictures on here, as well as anything else i feel you should know! Thanks for taking your time to read this utterly boring introductory post thing, and i hope to post soon!

    Laters! ;)

  21. Dear Fossil Forum members!

    This report deals with ammonoids from the former zone of Protrachyceras archelaus, which is our present Longobardian within the Ladinian stage of the marine Triassic timescale.



    A beautiful view of the surging “rock waves” of the incoming tectonic thrust sheets. The valley between the two Mountains in the middle of the picture marks the tectonic border between the mainly Triassic Hallstatt Unit and the Tirolikum Unit of the Totengebirgs nappe (in the background).


    Since the beginning of the geological research within the Northern Calcareous Alps of Austria in the middle of the 19th century, about 500 species of Triassic ammonoids have been described in great Monographs by Mojsisovics, Hauer, Diener and other early authors. The ammonoids described therein came from upper Anisian to uppermost Norian aged parts of the Hallstatt limestone in Austria.

    Only in the lower to middle Ladinian period, a gap exists in the rich ammonoid record of these early researchers.

    This gap was explained by them as an interruption of sedimentation in the Ladinian time or tectonically reduced Ladinian strata during the genesis of the Alps.

    During these early days no one thought of a collecting gap because Ladinian ammonoid faunae were well described and known from several localities in the Southern Alps and the Bakony Mountains in Hungary.

    In 1882 Mojsisovics pictured ammonoids of Anisian and Ladinian age in his monographic work “Die Cephalopoden der mediterranen Triasprovinz”.

    The locations mentioned therein reach from the upper Anisian Schreyeralm limestone here in Austria to several Ladinian locations of the former Austrian provinces Südtirol, Lombardy and the kingdom of Hungary, which were also part of the former Austrian-Hungarian Monarchy at this time. Included in this work were also Scythian and Anisian ammonoids from Croatia and Bosnia-Herzegovina.


    Fig.2 Frontpage of Mojsisovics second great monograph from the year 1882.

    The detailed accurate descriptions and illustrations provided by Mojsisovics are unquestionably the greatest contribution by a single author towards appreciating the astonishing beauty and variety of Triassic ammonoids” (cit. E. T. TOZER).

    Therefore every recent Triassic ammonoid researcher includes these old works in the standard literature of Triassic ammonoids. These old works were so to speak, a cornerstone for building the marine middle and upper Triassic timescale of our days.

    Unfortunately the early stratigraphic scales of Mojsisovics had some mistakes. Originally the stratigraphic position of the “Norian” stage was set by him below the Carnian.

    He used the term Norian for the time frame we today call Ladinian. Mojs. thought that most parts of today’s real Norian Hallstatt limestone of Austria were of the same age as real Ladinian strata in the Southern Alps. Some misinterpret location data, i.e. the wrong assumed position of the fineclastic Zlambach marls as base of the Hallstatt limestone led him to this wrong assumption.

    It was the Austrian geologist Alexander Bittner, a contemporary of Mojsisovics, who introduced the term Ladinian into literature by recognizing the false assumptions of Mojsisovics. The name Ladinian was chosen by Bittner after the Ladinian folk of the Southern Alps/Dolomites. At this time this area was also part of the Austrian-Hungarian monarchy with its capital Vienna and it’s so called “Vienna school” of the palaeontology institutions there.

    Probably this “miss take” of Mojsisovics led to some changed ammonoid zones within the Norian timescale, which last into the 20th century.

    It was the merit of the Canadian Triassic worker E.T. Tozer to correct this long lasting error by establish his own North American Triassic timescale, based only on North American, mainly Canadian Triassic ammonoid locations.

    The pelagic (deeper marine) Triassic sedimentation in Austria starts with the uppermost Anisian Flexo-Ptychites beds/lenses of the Schreyeralm limestone. This is also the base of the Hallstatt formation. The next frequent ammonoid lenses/layers occur within uppermost Ladinian/lower Carnian strata in this formation. The lower to middle Ladinian time frame in between was not well documented with ammonoids by the early researchers of the 19th century. At some historical locations the lower Ladinian part is/was given but was not really recognised by them.

    Later, modern researchers used microfossils to determine the placement of large parts of the grey to violet limestone in the Hallstatt formation into the Ladinian. Within the 20th century also scarce ammonoids were mentioned from these middle Ladinian strata.


    Fig.3 Anisian Schreieralm limestone with cross sections of Flexoptychites sp.


    Fig.4 Monophyllites sphaerophyllus (HAUER) from the Schreieralm limestone

    In general, ammonoid locations are not frequently known within the Ladinian part of the Hallstatt limestone.

    The most common fossils are Crinoid stem parts, Bivalves and Conodonts.

    The limestone facies consists of red to grey, sometimes yellowish to grey coloured limestone which is locally interbedded with marls.

    Also strongly condensed successions are common there and fossils also do not occur in continuous layers.

    Comparable Ladinian ammonoid faunas are also well known from similar Hallstatt type limestone in Greece and Italy. They show similar ammonoid faunae of Ladinian to Carnian age.

    In the Tethys realm the whole Ladinium is split into two subdivisions today.

    Upper Ladinian = Longobardian,

    Lower Ladinian = Fassanian,

    The historical zone ammonite of the Longobardian is Protrachyceras archelaus (LAUBE).



    Protrachyceras archelaus (LAUBE), in MOJSISOVICS “Die Cephalopoden der mediterranen Triasprovinz“ Wien 1882

    Tafel XXXL, Fig. 1,

    But Protrachyceras archelaus LAUBE do occur within a longer time span and is therefore not perfect for stratigraphic aims. The old archelaus zone of the Ladinian was therefore changed into several Longobardian and Fassanian ammonoid zones of today.

    Within the Tethys realm the Longobardian is split into the ammonoid zones of:

    Daxatina canadensis

    Frankites regoledanus

    Protrachyceras longobardicum

    The Fassanian is split to the ammonoid zones of:

    Eoprotrachyceras gredleri

    Protrachyceras margaritosum

    Eoprotrachyceras curionii

    The ammonoids shown in this report come from a condensed fossil bed roughly inserted to the turquoise marked ammonoid zones of the timescale below.


    Historical Ladinian locations

    The condensed lower Carnian fossil lenses on the famous historical Feuerkogel show almost all a portion of the upper Ladinian at their base. This is also visible at other Lower Carnian locations within the Hallstatt limestone.

    During the last years Proarcestes sp. from a new location are sometimes shown for sale in the internet. They are sometimes identified as Arcestes sp. from Norian strata. But it is Proarcestes, therefore its Norian age is definitely wrong.

    I visited this new locality a few years ago. All locations there are of Ladinian age which is evidenced by Proarcestes cf. subtridentinus, Anolcites sp. and Epigymnites sp. This fauna is maybe slightly younger than the fauna shown later here in this report.


    Fig.6 Some Epigymnites arthaberi (MOJS.) and Epigymnites moelleri (MOJS.) from the above mentioned location

    The new location

    Several years ago a friend and I were lucky to find a hitherto unknown middle Ladinian ammonoid location during a prospecting trip. At this location the normal limestone succession is penetrated by several fractures and tectonic influence across the normal layer direction is also visible there. The fossil layer itself, in which ammonoids were frequent, consists of a very strong condensed upper part of lower Longobardian age, indicated by Protrachyceras longobardicum (MOJS.), and a lower part of a slightly older age indicated by scarce last descendants of Ptychites cf. pauli MOJS. which show deeply incised second and third lateral saddles similar Aristoptychites or Arctoptychites.

    Therefore the location is ranged by me to the transition of the ammonoid zones of Protrachyceras longobardicum and the underlying Eoprotrachyceras gredleri zone. Outside of the Tethys realm this is roughly comparable to the zones of Meginoceras meginae MC LEARN and Tuchodiceras poseidon (TOZER) of the North American timescale. Both zones are known from the Triassic of British Columbia in Canada too. Tozer, 1994, wrote that flat forms of Protrachyceras sikianum MC LEARN are comparable with Protrachyceras longobardicum (MOJS.) and the thicker morphs of Pt. sikianum MC LEARN with Pt. archelaus (LAUBE).



    View of the lower, sometimes more greyish limestone part of the fossil layer. The chisel points to a Sturia cf. semiarata MOJS.

    The furrows on the limestone block have their origin in the strong condensation of this limestone. One can recognize by this feature the underlying part of a condensed limestone (fossil) layer.



    In contrast to the above shown picture, a view of the underside of the overlaying layer where craters/hollows are visible. These two features can be used for recognizing up and downside in strongly condensed limestone. This feature is independent from the Triassic age of the rock and occurs in condensed limestone of Jurassic age too.

    The right hanging limestone block contains the fossil layer.



    Protrachyceras longobardicum (MOJS). in situ. View from the underside. The upper half of the ammonoid was totally dissolved due to the extreme condensation of the uppermost limestone layer at this location.

    In this location P. archelaus occurs very scarcely. It is no good indicator for stratigraphic aims here at all.

    A normal collector can use the following features to insert ammonoids into the Ladinian timescale.

    1. The frequent occurrence of Proarcestes sp. with a wavy end body chamber is a sign for Ladinian age.

    1. All forms of Sturia sp. are restricted to the late Anisian and Ladinian.

    1. The occurrence of real Ladinian Protrachyceras MOJS.

    The following picture will show you the main differences between Protrachyceras, Trachyceras and Neoprotrachyceras.



    In contrast to Trachyceras the venter furrow of real Protrachyceras MOJS. is bordered by nodes which show a single point per node. Protrachyceras are restricted to the Ladinian.

    Real Trachyceras show “broader” nodes with two or three points a node bordering the venter furrow. Trachyceras is frequent in the Lower Carnian (Julian)

    The genus Neoprotrachyceras KRYSTYN looks similar toTrachyceras but shows also just one point per node, sometimes changing up to two points per node within maturity. Neoprotrachyceras is restricted to the uppermost Lower Carnian and lowermost Upper Carnian (e.g. the genus Spirogmoceras SILBERLING in the Dilleri Zone of the North American Tuvalian)

    For a newbie collector it is difficult to find some fossils in the Hallstatt limestone at all. To place them into the right ammonoid zone is sometimes the easier part of the exercise.



    A weathered cross section of Proarcestes sp., visible at the limestone wall. Notice the bleached limestone surface in contrast to the colour of the fresh rock.



    Talus block with visible cross sections of ammonoids and orthocone nautiloids

    Natural picture size is 20cm. The edges of the fossils are deeply weathered in. This can be a sign that the fossils will probably split out well.

    Small idiomorphic Biotite crystals up to one mm in size, fine Feldspar crystals and thin greenish tuffitic crusts around some ammonoids and limestone clasts indicate a distant simultaneous volcanic event, adjacent to the palaeo Hallstatt realm. This is the very first observation of volcanic fallout/washout within the Hallstatt limestone column.

    Within other tectonic nappes in the Northern and Southern Calcareous Alps (Dolomites) volcanic (Tuffitic) ash layers are a frequent feature in Ladinian time. In the adjacent Tirolic nappe some volcanic/tuffitic events are evidenced near the base of the archelaus zone.

    The middle Ladinian fauna listed below was found at this location.


    cf. Beyrichites sp.

    Eupinacoceras cf. damesi (MOJSISOVICS).

    Epigymnites cf. ecki (MOJS.)

    Epigymnites cf. breunneri (HAUER)

    Epigymnites arthaberi (MOJS.)

    Gymnites raphaelis TOMMASI

    Megaphyllites obolus MOJS.

    Monophyllites wengensis (KLIPSTEIN)

    cf. Silenticeras sp.

    Sturia cf. sansovinii MOJS.

    Sturia semiarata MOJS.

    Proarcestes ombonii TOMMASI

    Proarcestes subtridentinus MOJS.

    Proarcestes .sp.

    Procladiscites sp.

    Protrachyceras archelaus (LAUBE)

    Protrachyceras longobardicum MOJS.

    Protrachyceras sp.

    Ptychites cf. pauli MOJS.

    Ptychites cf. plusiae RENZ

    Michelinoceras sp.

    Atractites sp.

    Syringoceras cf. longobardicus

    Nautilus div. sp.


    Daonella sp.

    Peribositra sp.


    Discinisca sp.

    Austriellula dilatata (SUESS)

    Important ammonoid species of the archelaus zone

    A beautiful, conspicuous faunal element of the archelaus zone is Protrachyceras longobardicum MOJS. the zone ammonoid of the Langobardicum Zone

    This species shows its maximum roughly in the lower middle of the former archelaus zone and can be used well for stratigraphic aims. As mentioned earlier in this report compressed variants of Protrachyceras sikanianum MC LEARN are comparable to Pt. longobardicum MOJS. The thicker variants of Pt. sikanianum rather resemble Pt. archelaus LAUBE.


    Fig. 13 Protachyceras longobardicum MOJS. with Proarcestes ombonii TOMMASI and Proarcestes cf. subtridentinus MOJS.


    Fig. 14 Pt. cf. longobardicum, some juvenile Arcestes sp. and the brachiopod Austriellula dilatata.


    Fig. 15 Epigymnites breunneri (HAUER) and Monophyllites wengensis (KLIPSTEIN)


    Fig. 16 Epigymnites arthaberi MOJS. and Monophyllites wengensis (KLIPSTEIN)


    Fig. 17 Gymnites raphaelis TOMMASI


    Fig. 18Discinisca sp. Looks like a fossil Limpet gastropod (Patellidae) but in reality it is an inarticulate Brachiopoda


    Fig. 19Sturia cf. semiarata together with Proarcestes cf. ombonii

    The most frequent faunal element of the Ladinian within the Tethys realm is Proarcestes BRONN. This genus occurs with several species up to Carnian strata. In our location Proarcestes subtridentinus MOJS. and Proarcestes ombonii TOMMASI was often found. The second one can reach the dimension of a small ball.


    Fig. 20 Proarcestes subtridentinus


    Fig. 21 Monophyllites wengensis (KLIPSTEIN)

    In the Hallstatt limestone this genus starts with the Anisian Monophyllites sphaerophyllus via the Ladinian M. wengensis up to the Carnian M. simonyi. Within the descendants of the Triassic Phylloceratida the ancestor of the Jurassic Ammonitida is supposed.


    Fig. 22 Ptychites cf. pauli MOJS. This species of Ptychites show deeply incised second and third Lateral saddles. I think that this is a feature of allmost all "late" species of Ptychites.


    Fig. 23 Ptychites cf. plusiae RENZ


    Fig. 24 Sageceras walteri

    I hope you have enjoyed this new report about the Ladinian strata of my favourite collecting area.

    Again I thank, “Danke Roger”, Fossil forum member “Ludwigia” for correcting my “Austrian” English.

    Kind regards



    ALMA, F. H. (1926). Eine Fauna des Wettersteinkalkes bei Innsbruck. Annalen des Naturhistorischen Museums in Wien, 40, 111-129.

    BACHMANN, GH, JACOBSHAGEN, V (1974) Zur Fazies und Entstehung der Hallstätter Kalke von Epidauros (Anis bis Karn; Argolis, Griechenland). Z Deutsch Geol Ges, 125: 195-223

    DIENER, C. 1900: Die triadische Cephalopoden-Fauna der Schiechlinghöhe bei Hallstatt. Beiträge zur Paläontologie Österreich-Ungarns und des Orient 13

    v. HAUER, F. (1888). Die Cephalopoden des bosnischen Muschelkalkes von Han Bulog bei Sarajevo. KK Hof-und Staatsdruckerei.

    von Hauer, F. (1888. KK Hof-und Staatsdruckerei.

    KITTL, E., 1908, Beiträge zur Kenntnis der Triasbildungen der nordöstlichen

    Dobrudscha. Denkschriften der mathematisch-naturwissenschaftlichen Klasse der

    kaiserlichen: Akademie der Wissenschaften, v. 81, p. 445- 532

    KRISTAN-TOLLMANN, E, KRYSTYN, L (1975) Die Mikrofauna der ladinisch-karnischen Hallstätter Kalke von Sakliblei (Taurus-Gebirge, Türkei). Sitzungsber. Österr. Akad. Wiss. Math. Naturwiss. Kl. Abt. I, 184 (8-10): 259-340

    KRYSTYN, L. Zur Ammoniten und Conodonten-Stratigraphie der Hallstätter Obertrias(Salzkammergut, Österreich), Verh.Geol. B.-A., Wien 1973

    KRYSTYN, L (1983) The Epidauros Section (Greece) – a contribution to the conodont standard zonation of the Ladinian and Lower Carnian of the Tethys Realm. Schriftenreihe Erdwiss. Komm. Österr. Akad. Wiss., 5: 231-258.

    MOJSISOVICS, E. 1893: Die Cephalopoden der Hallstätter Kalke, Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, II Band, Wien 1893

    MOJSISOVICS, E. 1896: Beiträge zur Kenntniss der obertriadischen Cephalopoden Faunen des Himalaya, Denkschriften der Kaiserlichen Akademie der Wissenschaften

    Mathematisch–naturwissenschaftliche Classe, 63, 575–701. Wien 1896,

    TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin, 467, 1–663.

    MOJSISOVICS, E. V. 1879. Vorlaufige kurze Übersicht der Ammoniten-Gattungen

    der mediterranen und juvavischen Trias. Verhandlungen der kaiserlich-

    königlichen geologischen Reichsanstalt, 1879(7):133–143.

    MOJSISOVICS, E. V. 1882. Die Cephalopoden der mediterranen Triasprovinz.

    Abhandlungen der kaiserlich-königlischen geologischen Reichsanstalt, 10, 1–322.

    NITTEL, P. (2006) Geo Alp, Vol.3, S93-145, Beiträge zur Stratigraphie und Mikropaläontologie der Mitteltrias der Innsbrucker Nordkette(Nördliche Kalkalpen Austria)

    PISTOTNIK, U. 1973-74 Fazies und Tektonik der Hallstätter Zone

    von Bad Ischl — Bad Aussee (Salzkammergut, Österreich)

    RENZ, C. – 1931 Die Bulogkalke der Insel Hydra, Ostpeloponnes

    RENZ, C. (1910): Die mesozoischen Faunen Griechenlands I. Die triadischen Faunen der Argolis, Palaeontographica 58, S. 1-103, Tab. 1-7, Fig. 15

    RENZ, C. Neue griechische Trias Ammoniten aus den Verhandlungen der

    Naturforschenden Ges. Basel. S. 218- 255, Tab. 6-8, Abb. l, Basel.

    SALOPEK M. 1911,Über die Cephalopoden der mittleren Trias von Süddalmatien und Montenegro, Abhandlungen der .k.k geol. Reichsanstalt, Band 16, Heft 3

    WEITSCHAT, W. & LEHMANN, U. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella Shales) of Spitsbergen

    With plates 1-6, 2 tables and 9 text-figures Mitt. Geol.-PaläonInst. Univ. Hamburg. Heft 54, S. 27-54

    WENDT, J. (1970) Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys. N. Jb. Geol. Paläont. Mh., 1970/7: 433-448

  22. jesus' Blog

    • 1
    • 10
    • 4392

    Recent Entries

  23. Hihimanu Hale

    • 1
    • 0
    • 4638

    Recent Entries

    Latest Entry

    Hello to The Fossil Forum!

    Lately I am starting a souvenir collection of Aetobatis fossils. It's slow going, but I am just beginning:) I do all my collecting trading or purchasing fossils, since I live in Hawaii, and am disabled so can't easily get out in the fossil fields.

    When I was young I used to see the baby Spotted Eagle Rays swimming in the bay or out in the canal at Waikiki. They are adorable! I don't know how long this link will be good, but here is a short video I found on the net. Someone is selling live baby rays for aquariums. So cute!


    I want to recommend 2 of some of my favorite fossil dealers for shopping for shark and ray fossils.

    Buried Treasure Fossils: http://www.buriedtreasurefossils.com

    Vast selection of shark and ray teeth from all over the world, you can spend hours just browsing these catalogs! Very informative as well as very good shopping!

    Fossiliferous: E.R. Matheau-Raven:


    Very nice selection of all kinds of fossils, with a lot of unusual UK pieces.

    I just ordered some Aetobatis teeth from both of these friendly and helpful dealers this morning. The teeth are fragments, but very good ones, fine examples of extinct Aetobatis. Some of the pieces are 1" long, I wonder how bit the rays were in life?

    That's all for now, talk to you all soon:) Good luck fishing in stone my friends!

    • 1
    • 7
    • 4154

    Recent Entries

    Latest Entry

    So im a little unsure where to start out, i guess im going to write this all down to try and gather my thoughts and update my progress, Im aiming to become competent enuf in fossil prep to be able to get a paid full time job in something im massivley intrested in. Currently ive got boxes and boxes of uk fossils, mostly ammonites. They all need prepping too. Seems the ideal place to start, but first i need the equitment. Check, well sort of ive got a compressor and a st pen tho its in storeage and about 300 miles away. When i did use it ive found it nearly impossible to clen anything up, so the next step is to get a TT pen orderd. money permitting i shuld have this by the end of this month.

    On a slightly unrelated not......ive got all these ammonites and would happily trade them for other fossils so i can get some slightly diffrent things to prep. Secondly im in the UK , so anyone wanting to come over hear to hunt let me know as ive got some sweet spots whear ive found an icthysaur and ammonite about 18inches across. I will add pics some time but they are in storeage too at the moment.