Jump to content

Search the Community

Showing results for tags '3d'.



More search options

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. carcharodon, pliocene, cypresshead formation, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • General Fossil Discussion
    • Fossil Hunting Trips
    • Fossil ID
    • Is It Real? How to Recognize Fossil Fabrications
    • Partners in Paleontology - Member Contributions to Science
    • Questions & Answers
    • Fossil of the Month
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Member Fossil Trades Bulletin Board
    • Member-to-Member Fossil Sales
    • Fossil News
  • Gallery
  • Fossil Sites
    • Africa
    • Asia
    • Australia - New Zealand
    • Canada
    • Europe
    • Middle East
    • South America
    • United States
  • Fossil Media
    • Members Websites
    • Fossils On The Web
    • Fossil Photography
    • Fossil Literature
    • Documents

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Sir Knightia's Blog
  • Terry Dactyll's Blog
  • shakinchevy2008's Blog
  • MaHa's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • Lindsey's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Back of Beyond
  • St. Johns River Shark Teeth/Florida
  • Ameenah's Blog
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • nicciann's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • maybe a nest fossil?
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • xenacanthus' Blog
  • barnes' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • Emily's MotE Adventure
  • farfarawy's Blog
  • Microfossil Mania!
  • A Novice Geologist
  • Southern Comfort
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • The Crimson Creek
  • Stocksdale's Blog
  • andreas' Blog test
  • fossilman7's Blog
  • Hey Everyone :P
  • fossil maniac's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Hihimanu Hale
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • TyrannosaurusRex's Facts
  • PaleoWilliam's Blog
  • The Paleo-Tourist
  • The Community Post
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles
  • Walt's Blog
  • Between A Rock And A Hard Place
  • Rudist digging at "Point 25", St. Bartholomä, Styria, Austria (Campanian, Gosau-group)

Calendars

  • Calendar

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Found 47 results

  1. Tyrannosaurid tooth

    Tooth of a Tyrannosaurid. This tooth belongs to either Albertosaurus, Gorgosaurus or Daspletosaurus. Note the wear facets on the top and medial side of the tooth.
  2. I'm 3D printing this Velociraptor's skull - https://www.thingiverse.com/thing:2736627 Details are very realistic, but I didn't found any real Raptor's skull image to compare. Internet is full of replicas... Anyway, if you're going to 3D print it, consider that it is a very pain. It is badly split, and it is not very easy to 3D print: more than half of the pegs will break and some of the pieces have mesh issues. Also, I suggest to print teeth flat on the 3D printing bed, and not as the original STL. I will update the post with new images as I glue and paint it. Regards, Adriano
  3. Archeoceti skulls 3d WIP

    Hello again, on my constant search for 3d archeoceti references I stumbled upon a method that seems very promising: I took a 3d scan of a dog skull that I scanned myself via photogrammetry and twisted it around until it looked more or less dorudontine to me. That´s much less work than building the dorudon-skull from primitive shapes. Took me about 3 hours so far. This Method seems nearly unlimited to me (for artistic uses anyway) Take the closest recent skull you can get and transform it into your species of choice. I have never done anything like that before (not digitally at least) and after one day trying around Iam astonished at the result. Archeoceti here I come! here is the 2d reference I used: https://de.wikipedia.org/wiki/Datei:Dorudon_atrox_and_Maiacetus_inuus.jpg I hope for contructive advice on what is still wrong with the skull. Does it have to look so evil from the front? that´s what came out when I tried to recreate the top- and side view. Best Regards, J J
  4. Sigilmassasaurus vertebra

    Fourth cervical vertebra of a Spinosaurid. Very likely Sigilmassasaurus due to the short dorsal spine and proportions of the postzygapophyses.
  5. Hi everyone! As I have mentioned several times, being a 3D artist I am trying to move into the field of paleoart. Recently I have started modeling Ceratosaurus nasicornis in 3D, and I really want to make it as accurate and plausible as possible. Here is what I have got so far: a basic model done in 3ds Max. After this I am planning to take it to ZBrush and add more muscle definition, sking wrinkles, scales and other fine details. At this stage this is just the base and I would like to share it with you guys in order to receive some feedback from those who know their dinosaur anatomy. Did I get the shape and overall structure right? Constructive criticism is more then welcome, pretty much this is what I am asking for here. 1. Mesh 2. Body 3. Perspective 4. Back 5. Top view 6. Head close-up
  6. Hello everybody, This is my first post and first piece of artwork I would like to share and, hopefully, receive some feedback. I do 3D animation and rendering for living, but paleontology is my life long interest and passion. Here is my 3D reconstruction of Cambrian trilobite Olenoides serratus that was a common member of the famous Burgess Shale biota. I actually live just 250 km apart from the famous Burgess Shale quarry (and 100 km from Albertan Red Deer badlands rich with dinosaur fosslis).
  7. Bumpy Nodules

    Two halves of the same nodule.
  8. Titanis Phalanx

    This is the third phalanx from the Terror Bird Titanis walleri, found at a Blancan site in a North Central Florida river.
  9. Hi everyone. I'm a 3D artist and freelancer with lots of interests in paleontology. And for 6 years I have made dozens of models, many of which are of prehistoric model. I always try to make the model as accurate as possible. Here is a small figurine of the Psittacosaurus , with it's skin flaps and beak and coloration and everything (with the exception of the quills, due to 3D printing restriction). Besides this model, here are more pictures.
  10. classic,IMHO

    inEWESTcephalopsuturesrep89.pdf I loved fig.5,the reconstruction. Pictorially stunning If you already have the classic Westermann ,Oloriz,Hewitt and Checa literature: this is right up there,and then some But do I recommend it? on Doush's PDF-grade-o-meter*: 11 out of 10 *patent pending
  11. I recently got a copy of the Princeton Field Guide to Dinosaurs and decided to attempt to model a Velociraptor skeleton, maybe 3d print it once its done. Unfortunately the book doesn't include any front or back views of the skeleton so I would love some anatomical feedback. In addition, I could use a little help identifying the bones in red in this image: They aren't visible in the top view I have, so I don't know how they are supposed to connect with the rest of the rib cage.
  12. 3D printed skull

    Hey guys and gals, I believe some time back I saw a forum member that was doing 3D printing of skulls. Anyone remember seeing this? my searches were fruitless. I would be very grateful if someone could point me in the right direction. I am looking for about a 1/4 scale model of an Allosaurus skull to place in a donation box so customers can "Feed the Dino"
  13. Not sure if this is old news or not but it's a pretty good resource I only recently discovered... https://www.youtube.com/watch?v=b3eWcjXxVns https://umorf.ummp.lsa.umich.edu/wp/ Darrow
  14. I decided to do a little experiment yesterday after reading a little about photogrammetry and how it's being used in archaeology for 3D scanning sites. The idea of digitizing fossils in 3D is very, very cool to me. I decided to do a little more research on it and possibly give it a try. For this experiment: All software was completely free. I didn't use an expensive camera....In fact, I used my smartphone to take all the photos. Image size was only 1000x1000px and quality wasn't that great (it's a phone) I didn't have a good light setup. I used the flash on my phone. I had no experience with any of this prior to this experiment. For the subject, I used a whale vert that has some odd preservation. It seems like it was crushed a little during fossilization. The whole thing is off center and cracked in a lot of places. I thought it would be a good fossil to play around with for this. So, I took 46 photos at different angles all around the fossil, making sure to keep the distance the same and tried my best to keep my phone's camera in focus. There were two main steps after the photos were taken. 1. Create a point cloud that could be put into a program and used to make a 3D model from the 46 2D photographs 2. Use the same 46 images to create a texture to apply to the new 3D model. Thankfully, both steps were much easier than I expected them to be thanks to some software created as research projects by different students in a few different universities. I'm happy with the results considering it was done with free software and a cell phone. I could have used higher resolution photos and it probably would have looked nicer, but I didn't for this first test. I plan on messing around with this sort of thing more. There's tons of filters and options in the different programs that I haven't tested to see what they would do...and I haven't even tried a real camera with better lighting yet. I'm guessing that a good camera in direct sunlight would make a huge difference. A couple of things on the model didn't come out right, but that was probably just because I didn't get enough photos from different angles in certain places. Also, the bottom of the vert where it was sitting on the table obviously didn't get photographed, so it's just black. I'm sure you could flip the thing over, do the whole thing again and then put it all together, but that would require a lot more experience with these programs. If anybody is interested in playing around with this themselves, I can post the programs used..or I could write out a tutorial. When some even better software comes out, I can see this becoming a pretty common thing. Imagine a "gallery" full of 3D fossil scans! Whale Vertebra 4½" Tall Miocene Hawthorn Fm. Alachua County, FL Here's an additional two-part scan done using this method and a DSLR camera with more photographs: Titanis walleri Phalanx Pleistocene Gilchrist County, FL Beginner Tutorial The Programs & Configuration First, you need Visual SFM. (This is the program that turns the photos into a 3D point cloud) Next, you need CMVS for Windows or if you're not on Windows, go here. (This is just a few files that we put into Visual SFM that helps create our texture that gets applied to the 3D model) The last thing you'll need is Meshlab. (This is a very powerful 3D program that does all kinds of stuff. We'll be using it to turn our 3D point cloud into an actual model and apply our material to it...among a couple other things) Download Visual SFM & CMVS then extract them. Navigate to the correct folder for your computer and copy the contents of the CMVS folder. I'm on Windows 7 64 bit, so I went to the first folder I extracted, "CMVS-PMVS-master" > CMVS-PMVS-master > binariesWin-Linux > Win64-VS2010 and copied everything in there (minus the Readme.txt). Paste those files directly into the Visual SFM folder (the one with all the .dll files where the application to launch the program is) that you just extracted. Obviously, this is a one time thing. You get those files in the right place and every time you open Visual FSM to make a 3D model, it'll have CMVS right where it needs to be. Photographing When I took my photos, I placed the vert on a piece of newspaper with a lot of different colors, lines, images, etc. It's important that the software has common places of reference between different images so it can map out he point cloud accurately. Here's my vert set up ready to be photographed: Thinking about it now, it probably would have been smarter to elevate the vert slightly above the newspaper on a little block or something. I had a little trouble cropping the bright newspaper away from the vert. I took photos starting at a low angle spaced out as I slowly rotated around the fossil. I'd take a pic, move a tiny bit, take another, move a tiny bit, etc. Here's what four of my photos in sequence look like: I went in a full circle until I was sure that I had rotated around the fossil completely and even overlapped a bit, taking photos of the same angle I started with (better to have too many than too few). Then I angled the camera (well, phone in this case) at about a 45 degree angle and rotated around the fossil completely again. Those photos look like this: As you can tell, this are not great photos. I think that the model would have turned out much better looking if I took better photos in better lighting. After I completed that pass, I took one photo of the very top of the vert, facing downward. I made sure to always get a fair amount of the newspaper for tracking purposes. Then I used a great free program called Photoscape and it's batch editor to apply the same filter and crop to all the images at once. Make sure not to crop out your newspaper or whatever you're using to help with tracking. Do not use images with larger dimensions than 3200px! I read in a couple places that this would cause worse tracking and a lot of other problems. If you want to experiment with larger than that, go for it and see what happens..When I tried it, the program ran for a very long time and eventually froze my computer...but my original images were over 5000px each. Visual SFM When your photos are done, open up Visual SFM by going to the folder you extracted and clicking on the application. This is what it looks like: I wrote out some arrows to the things you'll be using in there. #1 is Open Multiple Images. Just click that, navigate to your images and upload them. You'll see the log window to the right doing some stuff....You should see your image thumbnails in the program in just a few moments. When that's done and there's no more activity in the log window, click on #2, Compute Missing Matches. This is the first thing that some computers could have trouble with. This one can take a little while depending on how many images you have and how large they are. When this is done and there's no more activity in the log window, we can get to the cool stuff. Click on #3, Compute 3D Reconstruction. This part is seriously amazing. It takes all of your images and automatically calculates where you were in relation to the object when you took the photo. Then it shows all the places an image was taken and it displays the point cloud in the center. It looks like this: The squares are everywhere I took a photo...You can see that I did a circle around the fossil down low and then a very sloppy "circle" above it. In the center, you'll see your sparse point cloud. If you want to make the little image icons bigger or smaller, it's ctrl + mouse wheel, if you want to change the size of the point cloud points, it's ctrl + alt. Time for the next step. When you clicked on button #3 and got your point cloud, a couple new buttons showed up. This is the one you need: #4 is Run Dense Reconstruction. When you click this, it's going to act like you're saving something. What you're doing is giving the software a directory to dump the files it's going to create. Make a new folder, give the file some name and click save. When you click save, look at the log window (if it's gone, the show/hide button for it is at the top, far left) and look for this: If you see the highlighted part, it means you correctly moved over the files from the CMVS folder you downloaded into the Visual SFM folder. It'll tell you that "this could take quite some time" and it definitely does. For my project (46 images at about 1.2MB each - 1000x1000px) it took 5 - 10 minutes, but before I resized those photos they were over 5000px each and this step ran for nearly an hour before my computer finally froze. Like I mentioned above in the photography part, I read in a few places that your images should be below 3200px on the longest side. You might want to think about closing down other programs that use up a lot of memory while you run this unless your computer has a lot of memory to spare. I closed out my browser and a bunch of other stuff just in case. When the log window says this is done, you should be able to hit Tab on your keyboard and see your dense point cloud....again, you can mess with the size of the points with ctrl + mouse wheel. This is still just a point cloud even though you'll start to see some color and image coming through. There's no need to save anything after this step is done. The program automatically wrote everything you need into the new folder that you created. And that's it for Visual SFM! Meshlab Go ahead and install Meshlab if you haven't already. It can look a little overwhelming at first, but we'll only be doing a couple pretty basic things. This is what Meshlab looks like: Go up to File and click Open Project (or the second button from the left, #1 in the photo above). Remember the folder you had to create when doing the last step (the dense point cloud) in Visual SFM? Navigate to that folder and you'll see a .nvm folder with the name. Open that file. It'll take a few moments to open. When it does, you'll see your point cloud open up into the program (upside down). Now is a good time to try to learn how to navigate around the viewport. The mouse wheel zooms in and out. Holding the left mouse button and moving the mouse rotates around the center. Holding the mouse scroll wheel and moving the mouse will pan the point cloud (or later, the mesh) around. I usually center it in the middle of the center rotation widget. Holding Alt and scrolling the mouse wheel will change the size of your point cloud points....You may need to do that to make them easier to see since we need to delete some soon. All this might take a little getting used to, but if you're patient you'll get the hang of it. Next, click on Show Layer Dialog, the #2 button in the image above. You'll see the little window on the right pop up. If you're at all familiar with photo editing, this layer window should be pretty familiar to you. Now we need to get our cameras showing up. Go to Render (#3) > Show Camera (#4). From there, go over to drop down arrow next to Show Camera on your side window below your layers (#5) and click it. Check on the Scale Factor here and make sure it's set to something like 0.04 or smaller depending on what you want. When I first did this, the camera scale factor was very high when I first clicked on Show Camera and it made it so I couldn't see my point cloud anymore. Time for bringing in our dense point cloud. First, click the little eye next to your layer in the side bar (#6) and you'll see your point cloud disappear. Next, go to File > Import Mesh (#7) and navigate to the same folder you created in Visual SFM where your .nvm file was. You'll see in the same folder a .ply file with the same name. Click that and import it. Reposition the mesh in the center and zoom in. Under Show Camera on the side bar, you may want to uncheck Show Raster Cameras so they don't get in your way for this next step. We're going to be selecting and deleting the stuff that we don't want in our finished model. Position your model carefully and click the Select Vertexes (#8) button. You can then click with the mouse and drag a rectangular selection around the stuff you don't want (#9). Be careful NOT to delete any of the actual model, only the surrounding stuff that was used for tracking (the newspaper in my case) and any random artifacts that might be hovering above or around the model. This isn't difficult, but it can be a little time consuming. This is why I recommended above that you elevate your fossil on a little block or something. Then you could just change to a side view and delete all the newspaper at once, cutting the block in half. When you drag the box around the stuff you don't want, that stuff will turn red meaning it's selected (see #9). When you have the right stuff selected, click #10, which is a Delete Vertices button. The area selected is gone now. Repeat 8, 9 and 10 changing angles carefully to get rid of everything that you need gone. Sometimes the wrong layer gets automatically selected (the invisible one) and when you hit the delete button, it won't do anything. Just click the layer ending in .0.ply if the top one gets selected and keep going. Don't hit the delete button if even a tiny piece of the model is selected...There's no undo button that I've seen, so if you make that mistake, you may have to go back to step 7 and import the mesh again. Here's another angle I used: Remember that you can hold Alt and scroll the mouse wheel to make the points bigger and smaller. If they're too small, you'll have trouble seeing what to delete and what not to. Next, go to Filters > Point Set > Surface Reconstruction: Poisson (#11) here: Then change the settings in the box that pops up to 12, 7, 1, 1 (or experiment a little, but that's what I used) like this: When that's done, hit apply and let it run. What comes out is a 3D model of your fossil! It's just missing the texture right now, but it's still very cool looking. Click the little eye on the layer that ends with .0.ply to hide it. It'll look something like this: Next, we need to go to go to Filters > Selection > Select Non Manifold Edges (#12), making sure the right layer is selected like so: A box will pop up. Just hit apply, then click the Delete Vertices (#13) button. This is just a preventative measure, you shouldn't notice much happening when you click delete. We're getting close! Just one last step and you'll have a fully textured 3D model. Go to Filters > Texture > Parameterization + texturing from registered rasters (#14). A box will pop up. I doubled the size of the texture and left everything else default. The default is 1024, I changed that to 2048. Go ahead and name your texture whatever you want. This step is taking all those images we took and making a single image file that has all angles on it. Hit apply. And there you go! A fully textured 3D model of a fossil from nothing but images: You can go ahead and export your model now. Click File > Export Mesh, give it a name, select the file type drop down here: I made sure to save in a couple different file formats. I saved in .obj and .dae. When you go to upload the 3D model somewhere, all you have to do is upload one of these files and then find your texture image that you created on step (#14) to apply to it. Keep in mind that this technique is not limited to small objects. You can map out environments in 3D too. Archaeologists use this technique (usually with high tech equipment) to take 3D models of archaeological dig sites. This technique can also be used for very detailed topographic mapping if you had a way of taking aerial pics. I'd love to see if anybody gives this thing a shot. If you try it and have trouble, let me know...I'm still very much a newbie at all this, but I'll do whatever I can to help figure it out. I'll post more in this thread as I make more 3D fossils. If anybody gives this a shot, have fun! It's definitely a learning experience. -Cris
  15. Sigilmassasaurus vertebra

    Vertebral process of Sigilmassasaurus. This is likely a mid cervical vertebra. It also bears close resemblance to the Spinosaurus maroccanus holotype which I consider to be synonymous with Sigilmassasaurus brevicollis.
  16. Dinosaur Vertebra

    Anterior dorsal? vertebra of a dinosaur. Likely Theropod due to it being hollow.
  17. Dinosaur Tail Vertebra

    A caudal vertebra of a small dinosaur. Probably a Theropod.
  18. At the very beginning of the 1960s, a South African palaeontologist embarked on a series of ambitious works. Dr A.S. Brink wanted to better understand the anatomy and evolution of humans’ pre-mammalian ancestors, the therapsids. Brink worked with therapsid skulls found in South Africa’s Karoo region. He ground the skulls at thin and regular intervals to assess their internal cranial anatomy. The technique, known as serial grinding, was commonly used at the time. As he neared the end of the process on one of the skulls Brink realised that he had uncovered a unique specimen. The skull represented a holotype, which is the single specimen used in the definition of any new species. But by then it was too late. More than 50 years later, we were among a group of scientists who followed in Brink’s footsteps. Our task was to recreate this unique specimen. Technology has moved on enormously in the last half century, so we were able to use 3D renderings and 3D printing – and one of our mammalian ancestors was reborn. Historical techniques South Africa was a good place for Brink’s work. The country’s Karoo region is home to a wealth of therapsid fossils, making it an important place to study the ancestry of mammals. Brink was not the first palaeontologist to use serial grinding. The technique emerged at the beginning of the 20th century. Before then scholars had to wait for the discovery of naturally preserved casts of internal structures, like the mold of the “fossil brain” of the Taung Child, Australopithecus africanus. Or they had to break fossils open. With its introduction, serial grinding became the only fully controlled way to access the “interior” of fossils. Because of their abundance, South African therapsids were among the first fossils to be studied using this new, revolutionary approach. Sadly, their abundance turned out to be a curse. Accidental destruction In 1961, Dr Brink started the serial grinding study of a well preserved skull. At this stage, he thought the specimen belonged to a common form of therapsid. But during the process, the sections revealed anatomical structures that suggested the specimen may actually represent a new species of fossil therapsid previously unknown to science. By then it was too late to save the fossil: it had already been mostly ground down. Brink tried to compensate by making a very thorough and accurate description and drawings of the specimen. He named it Scalopocynodon gracilis. As in zoology, the designation of type specimens is the most critical step when naming a new species in palaeontology. This type specimen, called a holotype, is meant to serve as an anatomical reference for future comparative works. A new species can’t be recorded without a holotype. So this ground specimen was particularly important: it constituted the holotype of Scalopocynodon gracilis. Sadly this valuable and irreplaceable piece of South Africa’s heritage and evidence of the evolution of pre-mammalian therapsids was lost. The irony is that it was destroyed by the very author of the species. Scalopocynodon was considered dead and forgotten – until 2016. Recreating our ancestor in 3D Evolutionary Studies Institute, Wits University It’s then that a team from the Evolutionary Studies Institute at Johannesburg’s University of the Witwatersrand retrieved some of Dr Brink’s drawings of the Scalopocynodon gracilisfrom 1961. These drawings represent each thin section ground by Brink. Their detail presented us with an unprecedented opportunity to virtually reconstruct the long lost specimen of Scalopocynodon gracilis. The drawings were digitised. Then, using cutting edge software and innovative computer-based technology, every slice was digitally reassembled in a single stack. This allowed us to reconstruct a 3D model of the original skull. Afterwards a physical model ofScalopocynodon was printed in 3D so we could recreate a life-sized reconstruction of this specimen. To our knowledge, this is the first time 3D technology has been used to recreate and print in 3D a serially ground fossil vertebrate (though it is quite often used in invertebrates palaeontology). This is a great initiative for South African heritage conservation. These techniques can be used on other fossils lost through serial grinding. Breathing new life Recreating a fossil using 3D technology is painstaking work. The 3D printed skull, serving as a holotype, could also help to breathe new life into this mysterious specimen. Taxonomists can now study it and one day might be able to say definitively that Brink was right: Scalopocynodon gracilis was indeed different from any other therapsid. http://theconversation.com/3d-technology-brings-a-lost-mammalian-ancestor-back-to-life-64059
  19. Globidens tooth

    Tooth crown of a Globidensine mosasaur.
  20. Globidens tooth

    A rooted tooth of a Globidensine mosasaur.
  21. Halisaurus arambourgi jaw

    A right maxilla of a small mosasaur.
  22. Prognathodon jaw

    Lower right jaw of a mosasaur.
  23. Prognathodon Fragments

    A jumble of jaw fragments, teeth and a caudal vertebra. During prepping I removed the vertebra from the main piece.
  24. Elasmosaur tooth

    Tooth of an Elasmosaurid.
×