Jump to content

Search the Community

Showing results for tags 'Identification'.

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. otodus, megalodon, shark tooth, miocene, bone valley formation, usa, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • Fossil ID
    • Fossil Hunting Trips
    • General Fossil Discussion
    • Partners in Paleontology - Member Contributions to Science
    • Fossil of the Month
    • Questions & Answers
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Is It Real? How to Recognize Fossil Fabrications
    • Member-to-Member Fossil Trades
    • Fossil News
  • Community News
    • Member Introductions
    • Member of the Month
    • Members' News & Diversions
  • General Category
    • Rocks & Minerals
    • Geology

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Terry Dactyll's Blog
  • Sir Knightia's Blog
  • MaHa's Blog
  • shakinchevy2008's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Lindsey's Blog
  • Back of Beyond
  • Ameenah's Blog
  • St. Johns River Shark Teeth/Florida
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • nicciann's Blog
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • barnes' Blog
  • xenacanthus' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • maybe a nest fossil?
  • farfarawy's Blog
  • Microfossil Mania!
  • blogs_blog_99
  • Southern Comfort
  • Emily's MotE Adventure
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • retired blog
  • andreas' Blog test
  • fossilman7's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • Hihimanu Hale
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • Stocksdale's Blog
  • PaleoWilliam's Blog
  • TyrannosaurusRex's Facts
  • The Community Post
  • The Paleo-Tourist
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • A Novice Geologist
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles
  • Walt's Blog
  • Between A Rock And A Hard Place
  • Rudist digging at "Point 25", St. Bartholomä, Styria, Austria (Campanian, Gosau-group)
  • Prognathodon saturator 101
  • Books I have enjoyed
  • Ladonia Texas Fossil Park
  • Trip Reports
  • Glendive Montana dinosaur bone Hell’s Creek
  • Test
  • Stratigraphic Succession of Chesapecten

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

  1. CBchiefski

    Advanced Dinosaur Egg Guide

    The Advanced Dinosaur Egg Guide Please share this with those who have egg questions. When possible, technical terms were avoided or defined. Every effort has been made to ensure accuracy, but it is always important to do your own research. This guide is merely a snapshot of information taken from many scientific publications. I am not an expert on eggs, rather I just love sharing what little I have learned over the years, what science has learned over the years. For an overview on how to spot a fossilized dinosaur egg and the sizes of eggs, see the basic guide: Somewhat outdated yet still a good overview of dinosaur reproduction and eggs, with a focus on Mongolia: What is so special about eggs? The amniotic egg is one of the most significant evolutionary adaptations as it allowed vertebrate life to permanently exist on land. Long before the dinosaurs and their modern descendants including the chicken, the egg came first. In fact, the better question to ask is “Which came first? The lizard or the egg?” Before the amniotic egg, amphibians and some fish were the only vertebrates able to even venture on land and only for rather short periods of time. A great deal of information has come from studying eggs. What we have learned is summarized as: From University of California Museum of Paleontology Egg Anatomy: Using the best known modern avian dinosaur, the chicken--scientifically Gallus gallus, let us go over the different parts of an egg: “(A) The generalized anatomy of an egg. (B) The chicken eggshell comprises three crystalline layers, including the mammillary layer, prismatic layer, and external layer. The cuticle layer overlying the calcareous eggshell is further divided to two layers, including a HAp inner layer and a proteinaceous outer layer. The shell membrane, namely membrane testacea, is also characterized by two layers. (C) SEM image of the cuticle on the surface of the Gallus eggshell, showing a patchy and cracked pattern. (D) SEM image of the radial section of the Gallus eggshell. The white arrow indicates the cuticle layer that lies on the calcitic eggshell.” From Yang et al. 2018 Fig. 1 Those were technical terms, so how about we simplify. The chicken egg has three distinct shell layers mainly made of calcite, then a soft membrane on the inside of that. What is known as egg whites are the albumen which surrounds the yellow yolk located near the center. The embryo develops within the albumen and is fed with nutrients stored in the yolk. The surface of eggshell is full of openings, tiny pores, and these allow for gas to pass through the shell. A developing embryo needs to breathe just like any animal. Additional information: http://www.ucmp.berkeley.edu/science/eggshell/eggshell1.php How to spot a fake egg: First, the best way to avoid fake eggs is to go and collect them yourself. Always make sure to follow the laws and have permission to collect. In the United States, typically a good way to follow the law is through collection on private land with expressed permission from the landowner. Views of paleontologists do range on private ownership of fossils with many not condoning or endorsing. I personally have little issue with it since amateur collectors have made countless important finds while prospecting for their personal collection. If you are going to buy, do everything possible to ensure the egg or any fossil was legally collected. Often with fake eggs everything seems too perfect. Eggs are delicate and easily crushed or damaged so if there are no signs of any damage or natural alterations be very wary. If the surface has ridges, check to see those ridges continue across a crack or break of the shell. Many fake eggs are mosaics made up of real eggshell fragments assembled together in an egg shape. These mosaics tend to not have the eggshell match on opposite sides of a crack. If you would like more information beyond what is provided or have an unanswered question, feel free to start a thread. If after reading, you want to purchase an egg then please ask the seller for the best pictures they can provide of that egg with something to show scale such as a ruler and start a thread. There are many on the forum who are happy help determine if an egg is in fact real. Just please, whether collecting or buying, make sure you know the laws and follow them. A few good threads on real vs fake eggs: http://www.thefossilforum.com/index.php?/topic/69391-examples-of-commonly-faked-dino-eggs/ http://www.thefossilforum.com/index.php?/topic/83533-red-flag-on-hadrosaur-egg/ http://www.thefossilforum.com/index.php?/topic/71462-beware-of-hadrosaur-eggs/ http://www.thefossilforum.com/index.php?/topic/79465-this-is-how-realistic-a-fakereplica-oviraptor-egg-looks/ How are eggshell and eggs classified? Many people try to name an egg to a specific dinosaur, usually incorrectly. With embryonic remains, however, an egg can be scientifically linked to a particular dinosaur (explained in the next section). Another accepted way for eggs to be linked is through a pregnant female, there are examples of females which died while carry eggs internally. Adults on top of a clutch can be used however only with caution. Eggs are given their own naming scheme just as animals have theirs. In normal taxonomy, we have species, genus, and family whereas eggs have an oospecies, oogenus, and oofamily. The term used for egg taxonomy is parataxonomy. Parataxonomy is used in place of traditional taxonomy when an actual animal or plant cannot be linked, for example--from a lack of data. In the case of Troodon formosus, its eggs are the oofamily Prismatoolithidae, oogenus Prismatoolithus, and oospecies levis. Parataxonomy is the same system used for trace fossils, such as footprints which are normally not linked to the dinosaur who made them. What is inside a fossilized egg? Is there a yolk? What about bones? Very rarely are embryonic bones found, typically eggs have been filled in with sediments. These then lithify (become rock) and so the inside of nearly all fossil eggs is rock that is similar, if not identical, to the surrounding rock. Eggshell is brittle by its nature and so often cracks, these cracks allow whatever sediments are surrounding to fill in the egg and, depending on how recent it was laid to said crack, allow the amniotic sac and other fluids to drain out. Here is a CT scan of some eggs I am working on. You can see how the surrounding rock is very similar to the inside of the eggs. In addition to looking for embryonic material, the scan gives us information on the infill, the true shape of the eggs, and reveals anything which could otherwise not be seen within them. Sometimes insects can be found near an egg, for example. Embryonic bones from the oviraptor Citipati, this embryo is curled within the egg. From Wikimedia Commons Importance of Embryonic bones: https://youtu.be/cubdagTiRHE?t=48 Embryonic remains are vital for an actual animal ID, so any chance of them being present must be investigated. If you have any tiny bones which can be seen inside an egg or directly near it, I would strongly encourage you to take the specimen to your nearest paleontology related museum or university. If it does have embryonic remains in or near, then the specimen is invaluable to science. The presence of those tiny remains allows for the next question to be asked. Do we know who laid this egg? Which particular dinosaur? Most likely no, there are some wonderful exceptions though. Several ootaxa (eggshell type) are known to the dinosaur genus or family they were laid by. Here are some examples of eggs and eggshell which were linked scientifically to a particular dinosaur from embryonic remains. Dinosaur or family and its known egg type, oogenus or oofamily. This list is not comprehensive as new discoveries and revisions are made every year. Allosaurus sp. known to Preprismatoolithus coloradensis. (This is debated) Beibeilong (Oviraptor) known to Elongatoolithidae. Citipati (Oviraptor) known to Elongatoolithidae. (See the picture above) Gobipipus (Avian) known to Gobioolithus minor. Heyuannia (Oviraptor) known to Elongatoolithidae. Hypacrosaurus (Hadrosaur) known to Spheroolithus oosp. Lourinhanosaurus (Theropod) known to cf. Preprismatoolithus. Maiasaura (Hadrosaur) known to Spheroolithus oosp. Oviraptorid known to Elongatoolithidae. Therizinosauroid (med to large theropod) known to Dendroolithidae. Titanosaur (Sauropod) known to Megaloolithus patagonicus. Troodon (small Theropod) known to Prismatoolithus levis. Generally, be wary of any claim that an egg was laid by a certain dinosaur! Additional information: http://www.ucmp.berkeley.edu/science/eggshell/eggshell3.php What groups of dinosaurs do we have eggs for? The vast majority of eggs are from non-avian theropods. This group includes dromaeosaurs (like Velociraptor), allosaurs, and tyrannosaurs. We also have eggs from Mesozoic aves (birds), hadrosaurs (duck-billed dinosaurs) and sauropods (long-necks). It is worth noting when we say that the majority of eggs are therapod we mean it. Around 61% of the eggs found globally are therapod and between 41-64% are maniraptorans (birds and their closest non-avian dinosaur relatives). For the others the numbers are much smaller: 7% are sauropods, 13% are ornithischians (hadrosaurs and relatives) with 19% still unknown and that is no yolk. Here is an example of a clutch from an oviraptor, elongated eggs are typical of many theropods: Pic from The Zuhl Museum On the non-dinosaur side of things, we also have eggs from turtles, crocodiles, lizards, and pterosaurs (flying reptiles). There are several groups of dinosaurs who have no egg representation in the fossil record yet. Despite many people trying to find them, there are still no ceratopsian (horned dinosaur) eggs. There are no ankylosaur (armored dinosaur) or stegosaur (spiked/plated dinosaur) eggs as of yet either. This could simply be due to bias in the fossil record but there also could be other factors. Perhaps, it is a case like the ichthyosaur (marine reptile), which gave live birth, unlike most reptiles that lay eggs. Most of us are familiar with the platypus in the mammalian world, which lay eggs despite being a mammal. Maybe some dinosaurs did not actually lay eggs. Now that would be an eggciting discovery! Below one can see how similar clutches are for two very different types of hadrosaurs. The above is a rather typical egg clutch for a hadrosaur with spherical shaped eggs. Some of these eggs had embryonic remains which allowed them to be identified to a dinosaur. In this case they were narrowed down to within the lambeosaurinae subfamily but sadly could not be narrowed further. Pic from Museum of the Rockies Clutch of another hadrosaur, the good mother Maiasaura. Again, the eggs are spherical and embryonic remains allowed the eggs to be linked with Maiasaura. Pic from Museum of the Rockies The great identification mistake: Now that it is abundantly clear the only way to link a dinosaur and an egg is with embryonic bone. Why is that? Surely there must be other ways to ID who an egg is from. Well, let me share the story of poor Oviraptor, who was wrongly accused of stealing eggs. When the first Oviraptor was discovered, the skeleton was not alone. Underneath it was a clutch of eggs. At the time there were no embryonic remains in these eggs, so it was assumed that the strange looking animal was, in fact, stealing the eggs from Protoceratops, hence the name oviraptor meaning “egg thief.” Later, not far from the original site, another nest was found, this time with an almost perfectly preserved embryo. The embryo was clearly of that of an Oviraptor to be eggs-act. So, with both discoveries, paleontologists determined that Oviraptor was actually a brooding dinosaur much like birds today. This story is an eggcellent example of science improving upon itself and the need to be careful with assumptions. Paleontology is an ever-changing field, which constantly works to improve our understanding of the prior natural world. A common incorrect identification nowadays is that of “Tarbosaurus eggs.” Tarbosaurus is very similar to Tyrannosaurus rex, however, it lived in Asia. Among the largest of eggs ever found, were two measuring 11 cm (4.3 in) wide and an amazing 60 cm (24 in) long. The elongated shape meant they were probably from a large theropod and so were thought to be from Tarbosaurus. Scientifically these eggs are the oogenus macroelongatoolithus. Based on detailed analysis, these eggs most likely are from a large oviraptor and not Tarbosaurus. Alright, so then how are eggs differentiated and how without embryonic bones would an egg likely be from an oviraptor? How are eggs distinguished from each other? We went over how to link a dinosaur to an egg, what about one egg to another or finding differences between eggs? Well, there are a few different ways, one is the surface of eggshell. Many eggs have different textures but surface texture can be eroded or altered so cannot be used alone. Thickness and porosity of eggshell can be measured and provide solid data points for comparisons. Two of the best techniques for examining eggshell are with the use of SEM and thin sections. A scanning electron microscope (SEM) is a very powerful microscope, which can view objects in eggstreme detail. Petrographic thin sections are tiny slices of a rock so thin that light can actually pass through it. Both SEM and thin sections allow for the tiny details of eggshell to be visible, meaning unique traits, variations, and similarities can all be seen. Below are two types of eggshell, how many differences can you spot? A thin section of hadrosaur eggshell, there is only a single continuous layer. Pic from University of Calgary A thin section of oviraptor eggshell, there are two distinct layers with the arrow showing the point where both meet. Pic from University of Calgary On thick eggshell, the cross-section view can often show many details otherwise too small to see. Below is Faveoolithus eggshell, which is large enough to show the internal structure of the shell itself. Pic from Montana State University, taken by P. Germano Naming: Dinosaur eggs, much like actual dinosaurs, are named following a convention with information in the name, and normally an honor to an individual or location where it was discovered. As already covered, naming uses a system of parataxonomy and with eggs, this is called ootaxonomy. Using the method covered above, similarities and differences of eggshell can be identified. Based on these similarities and differences, eggs can be grouped. Some of these groups are associated with a type of dinosaur. As already covered, from embryonic remains or other methods an animal can be linked and associated to its eggs. Sometimes eggs can be grouped based on similarities yet there are no ways to associate them with a dinosaur, so these are listed as unknown. An egg group being associated to a type of dinosaur does not mean all eggs within the group are exclusive to that single type of dinosaur. Some eggs were named prior to the naming convention being established or do not fit any of the known groups, as such these have a truly unique name. That said, most eggs fit one of the following: Name- dinosaurs associated Sphero- Hadrosaurs Ovalo- Unknown Faveo- Unknown (Could be sauropods) Megalo- Titanosaurs Dictyo- theropods Dendro- Therizinosaurs Elongato- Oviraptors Prismato- Troodontids Egg and dinosaur associations, from top to bottom, Elongato- with Oviraptors, Sphero- with Hadrosaurs, Prismato- with Troodontids, Dictyo- and similar eggs from unknown theropods. Pic from the Royal Tyrrell Museum What time periods do we have eggs from? Nearly every egg from the Mesozoic is from within the Late Cretaceous. One study found of 238 eggs examined, 225 were from the Late Cretaceous, 10 from the Early Cretaceous, 2 from during the Late Jurassic and a single egg from the early Jurassic. Since then more eggs have been found, yet the trend holds. A likely explanation for such massive bias would be the Late Cretaceous is more recent so eggs from then are more likely to be preserved and undergo less alteration. Did an egg hatch? The hatching question is a difficult one to answer scientifically with most egg specimens, of course, a nearly complete egg is likely unhatched. Much of the strength in eggs comes from their shape and this means once there is an opening in the shell that strength is lost. There are many ways for an egg to break, one of which is the baby breaking out, but many of the broken eggs we find may have yielded no baby. The term unhatched and failed are often used interchangeably but the term failed is preferred as “unhatched” which implies the egg was fertilized and had a real chance. It is possible and likely probable that no fertilization was the cause for many eggs to not hatch. An overview of the different ways an egg can be filled. From Mueller-Towe et al. (2002) Nest? For as rare as eggs are, finding an egg clutch within a sedimentary structure is many times rarer. There have been several sedimentary structures found around egg clutches, which were interpreted as nests. One of the most interesting of these is a “U” shaped structure which looks similar to a horseshoe, see the picture below. In the center of this “U” shaped structure was a clutch of Troodon eggs. It is possible many nests were constructed like modern bird nests, with sticks, straw, leaves and other such material. This material in nest building, unfortunately, means they would most likely not preserve. Possible nest structure for Troodon, tape measure equals 1m (39in) and the white plaster jacket is covering a clutch of Troodon eggs. Modified from Varricchio et al. 1997 How can we tell what happened to an egg and the nest? By studying modern nests, it was found eggshell fragments tend not to travel very far while remaining in large concentrations. This means when a large grouping of eggshell fragments are found, it is unlikely they have moved much. Modern eggshell fragments can be found in ratios of concave up vs concave down based on what happened to the nest. For example, if a nest had a predator come and eat eggs, the eggshell would be concave up vs down in a ratio of about 70:30, sometimes 65:35. Obviously, if the eggshell fragments are moved then ratios will not work, but again, where high concentrations of eggshell are found, there was little to no movement. The ratio technique is still in the early stages of being applied to nest from the Mesozoic so in time there may be more information. The Emu eggshell above is concave-up. Pic by P. Germano The Emu eggshell below is concave down. Pic by P. Germano In both pictures, different layers of the eggshell can be seen and such layering indicates the eggshell is from a theropod, in this particular case, an avian. Where in the world are dinosaur eggs found? Eggs are extremely rare and there are only a select number of places where they have been found so far. Eggshell fragments, on the other hand, are actually rather common and can be found in many formations. One main reason eggshell is relatively abundant compared to complete eggs is that a single egg when broken can become dozens of fragments. Geographically eggs so far were found in Argentina, Canada, China, Columbia, France, Great Britain, India, Kazakhstan, Mongolia, Peru, Portugal, Romania, South Korea, Spain, Switzerland, the United States, and Uruguay. Within Canada, eggs are exclusively found in Alberta. Within the USA, eggs have been found in Colorado, Idaho, Montana, New Mexico, South Dakota, Utah, and Wyoming. The vast majority of eggs are found in Asia. Additional information: http://www.ucmp.berkeley.edu/science/eggshell/eggshell4.php Did dinosaurs care for their young? It seems that many dinosaurs did in fact care for their young. Evidence for this has been found on multiple continents. There is still debate over the type and amount of care the parents may have provided. There are two major variations in care being debated, and these come down to whether the offspring were altricial or precocial. See the list of terms near the end of this guide for definitions. One possibility is that a group of adults would use cooperative breeding to care for a clutch, this is basically the village raising a child approach. With theropods, in particular Oviraptor, the presence of adults on eggs does support incubation and possibly even brooding. Hatchlings have been found within a nest and could have died there for many reasons, brood reduction and siblicide are both entirely possible. Given the diversity of dinosaurs, it is likely different dinosaurs provided varying levels of care for their young. Modern example showing a female crocodile providing care: Modern example of a spoonbill bird raising young: Some dinosaurs such as the sauropod titanosaurs, likely did not care for their young but rather used the same strategy as sea turtles. A large group of females would lay hundreds of eggs at once to overwhelm the predators and just by sheer numbers allowing some of the babies to live to adulthood. Are there any diseases or mutations of eggshells? Yes, we have paleopathologies found in eggshell. Paleo meaning ancient and pathology being the study of diseases, so paleopathology is the study of ancient diseases. One of the more common is where two or more layers of eggshell overlap in a way where the pores no longer pass through the entire shell, this reduces the amount of oxygen an embryo can receive. Too many of the pores being misaligned can be fatal. What color were eggs? One of the most recent breakthroughs in egg research is an ability to determine colors present within fossilized eggshell. Interestingly, from the eggs so far examined there seem to be many colors and patterns. With this being rather new to the field, not many eggs have been tested plus there is likely some error and bias. Even so, there are remarkable results. Some eggs were simple, just white. Some were speckled. Many were dull earthy colors, while others were green and blue. Given their close relationship, it is logical to assume dinosaur eggs could show any variations of what we see from either crocs or birds. Modern crocodiles have white eggs whereas modern bird eggs range in color and pattern. Interestingly, even within the same bird species there is a range in color, so it is entirely possible dinosaur eggs from the same species also vary in color. Three modern chicken eggs showing variation in colors and size. From Wikimedia Commons What is working with eggs like? Fieldwork: The basic process of removing eggs from the ground is very similar to that of removing fossilized bones. The approximate size of an egg is figured out and then the area around it is trenched until a plateau is formed. Next, a plaster jacket is made encasing the plateau. The bottom of this is removed until the whole thing can be “popped.” After which it is flipped and then is ready to be brought back to the museum. An egg at a new nesting site just after I uncovered it. Pic from the Two Medicine Dinosaur Center Jacketing an egg at Egg Mountain in Montana. Pics by D. O’Farrell. To find small fragments of eggshell and embryonic bones, removed rock is often sifted. Since they are so small—and also a rock surrounded by rocks—many times until sifted, the tiny bones or eggshell are not visible. Sifting for eggshell, here I am showing Paleontologist Barbie an example eggshell fragment. Pic from Coffeewithhallelujah After viewing the example fragment, my esteemed colleague Paleontologist Barbie was able to find an eggshell fragment. Can you find the piece of eggshell below? Pic from Coffeewithhallelujah Preparing and reconstructing an egg: Eggs tend to be more tedious and require more patience than normal prep work. Eggs are not that difficult to prepare, however, to an even greater extent than bones, they are very unforgiving. Reassembling a fossil bone after a mistake is not necessarily easy, however it is normally possible. The same often cannot be said for fossilized eggs. If you ever want to try and reconstruct a dino egg, just save the last chicken egg after cracking it and then try to reassemble. Remember, chickens are dinosaurs and their eggs make a decent modern analog to a classic theropod egg. Eggs in context- The Two Medicine Formation: To bring us all the way back to the beginning, what is the importance of studying eggs? Why bother? The primary geologic formation I have spent the last seven years working in is the Two Medicine and in terms of eggs, it is the most significant location in North America. One newly discovered nest I am fortunate enough to have an ongoing role in excavating and scientifically describing. From eggs and embryonic remains, the ecosystem of the Two Medicine is relatively well known compared to nearly every other formation. In terms of paleoecology, nesting sites show where adults felt safe and secure with enough food, water, and other resources. Within this formation was true evidence for parental care, particularly care in the form of nurture similar to birds. Behavior is nearly impossible to deduce from the limited fossil record, yet the care for young is strongly supported thanks to discoveries in the Two Med. Three dinosaurs from the formation have been linked to their eggs, Hypacrosaurus, Maiasaura, and Troodon. It may not seem impressive but three dinosaurs with embryonic remains is a truly remarkable find and incredibly rare. Even now, after over forty years of study, the Two Med continues to surprise with new nesting sites. Read about how the Two Medicine and Maiasaura was discovered: Additional information: http://www.ucmp.berkeley.edu/science/eggshell/eggshell_case1.php https://www.nps.gov/articles/mesozoic-egg-mountain-dawson-2014.htm https://serc.carleton.edu/research_education/mt_geoheritage/sites/augusta_choteau/paleontology.html http://www.georgialifetraces.com/2014/07/15/tracing-the-two-medicine/ http://www.georgialifetraces.com/2014/08/04/fossil-visions-in-the-two-medicine/ Hear me talk about my research on eggs and Troodon: Dinosaurs as living animals: Eggs allow us to see these animals as just that, animals. There is a reason many feel sad when seeing a baby dinosaur still in its egg, yet the same sadness tends to not be shown for adults. Why? The poor baby was deprived of an actual life and it is easy to relate. When covering a natural disaster, one goal of reporting is to humanize the story. In a similar way, when reporting on dinosaurs, it is important to try and do the same. Eggs allow us to come far closer to dinosaurs as true animals than I feel we ever will through bones alone. Eggs and reproduction give a window into the lives of these wonderful animals. When trying to describe what separates something living from an inanimate object, the ability to reproduce is used as a major criterion, therefore making it one of the most important aspects of dinosaurs to study in detail. Some Relevant Terms: These typically are used for modern birds and the classic theropods. Altricial: A developmental classification where at hatching, the offspring are relatively immobile, lack feathers or down, have closed eyes and are completely dependent on their parents for survival. Altricial birds include herons, hawks, woodpeckers, owls, and most passerine songbirds. Brood (n): The offspring of an animal which are hatched or cared for at one time. Brood (v): To sit on and keep warm. Brooding: To sit on and keep offspring warm when they cannot maintain their own body temperatures. Brood reduction: A reproductive strategy where the female lays more eggs than can be cared for and raised. The smallest and weakest of the brood typically starve or are killed by siblings. Clutch: Total number of eggs laid by a female in one nest attempt, often 3 or more. Conspecific: Of the same species. Cooperative breeding: Breeding system where non-parental adults assist other breeding pairs (usually their own parents) to rear offspring, instead of dispersing from the nest or breeding themselves. Incubation: The process by which parents keep eggs at the proper temperature to ensure normal embryonic development until hatching. In most cases, birds sit on eggs and transfer their body heat through a patch of skin known as the brood patch. In many species, only the female incubates; in other species, both males and females incubate. Less common is where only the male incubates. Precocial: Offspring are capable of a high degree of independent activity immediately after hatching. Precocial young typically can move about, have their eyes open and will be covered in down at hatching. They are generally able to walk away from the nest as soon as they have dried off. Siblicide: The death of a young animal usually as a result of fighting with siblings over food, common in years when food is in short supply. Further reading and information: https://www.amnh.org/our-research/paleontology/about-the-division/more/fossil-identification/dinosaur-eggs-fossil-identification http://www.ucmp.berkeley.edu/science/eggshell/index.php http://www.ucmp.berkeley.edu/science/eggshell/eggshell_hirsch.php http://www.ucmp.berkeley.edu/science/eggshell/eggshell5.php https://feederwatch.org/blog/raptors-make-good-neighbors-hummingbirds/ Images: University of California Museum of Paleontology: http://www.ucmp.berkeley.edu/ Yang et al. 2018: https://doi.org/10.7717/peerj.5144 Montana State University: http://www.montana.edu/ Two Medicine Dinosaur Center: http://www.tmdinosaurcenter.org/ Royal Tyrrell Museum: http://tyrrellmuseum.com/ Museum of the Rockies: https://museumoftherockies.org/ The Zuhl Museum: https://zuhlmuseum.nmsu.edu/ Dr. Tony Martin: http://www.georgialifetraces.com/ Mueller-Towe et al. 2002: https://www.researchgate.net/publication/260391508_Hatching_and_infilling_of_dinosaur_eggs_as_revealed_by_computed_tomography University of Calgary Hadrosaur eggshell: https://www.ucalgary.ca/drg/imagesort/00S000500 Oviraptor eggshell: https://www.ucalgary.ca/drg/imagesort/00S001300 Varricchio et al. 1997: https://www.researchgate.net/publication/232793785_Nest_and_egg_clutches_of_the_dinosaur_Troodon_formosus_and_the_evolution_of_avian_reproductive_traits Coffeewithhallelujah: http://coffeewithhallelujah.blogspot.com/2015/07/paleontologist-barbie-at-two-medicine.html Wikimedia Commons Citipati: https://en.wikipedia.org/wiki/Citipati Chicken eggs: https://en.wikipedia.org/wiki/Egg_as_food List of open access egg related papers: Thanks to the late Joe Gallo for this wonderful list. Disclaimer: For legal purposes, it should be noted links to an institution does not constitute endorsement by the respective institution and pictures are used here for educational purposes only. All rights belong to their respective owners. From the 2018 SVP meeting, my poster, which was a presentation on new dinosaur eggs. Pic from the Two Medicine Dinosaur Center Many thanks to J. Cozart and L. Murphy for writing some sections as well as edits. Thanks to D. Lawver, Ph.D. for reviewing the information presented. I especially would like to thank @Fossildude19 for assisting me and additionally thank these members for input and suggestions: @Troodon . @Seguidora-de-Isis . @HamptonsDoc . @-Andy- Eric P.
  2. IanBrown

    Help identifying possible fossil

    Found this on the side of my yard in Indiana. Notice the strange circular formation on the inside. I only just noticed the back side which appears to be a fossil of some kind. I'm no expert, but from the look of the fossil, my best guess would be a bird of some kind. Then again, it's probably nothing.
  3. SarahCosgriff

    Please help identity

    Could someone please help me figure out what this is. I found it by the River in Libby Montana a couple years ago. Just curious what I have, please and thank you.
  4. magicalmrmerlin

    Trilobite ID

    I will post some photos here. These are not my best trilobites and I am limited for space, so I will probably have to let these go at some point. One reason I haven't got around to researching them yet. Still it would be good to have definitive ID. I have my own ideas but would be good to see what you guys think.
  5. I found a beautiful burned and petrified tree under a hundred feet of basalt in oregon. Can someone please help me identify this and point me in the right direction? Christopher Finck. Thank you
  6. Need help identifying what I'm guessing is a Fossilized Crustacean or turtle that I found this week on Yellowstone River. Any help would be highly appreciated.
  7. First poster and fresh account here, so hopefully I've done everything up to code! Found this while at the beach in washington. Thought it might be dinosaur poo, so brought it back. Though i'd love to be sure of what it is, if anything. It does seem to be a bit tacky when licked, but...cant say I've ever licked dino poo before so can't be certain what i'm licking for hah. Pictures had to be shrunk to all fit, then compiled them to compact further, so hopefully details still show. Front Side Back Side Side One (with ruler) Side Two (with ruler) Front Side In Sun
  8. UncoilingGLaDOS

    Sulphur Creek Mystery Fossils

    I have some mystery fossils from Ladonia, Texas, collected in the Sulphur Creek riverbed. I'm not sure if the fragments are identifiable, but there is one i fine interesting I'd like to get opinions on, I'll start with that one! (after an overall shot:)The fossil I'm finding particularly interesting is the second from right (detail shots below) THis is a total guess but is it a fish fin possibly? Or a small plant? Next is a jaw fragment I'd love to know anything more about: {Will continue in a reply below}
  9. So I have this fossil and I have no clue what it is. I am brand new to fossils so I know I don't know much but it looks like maybe a fish head to me? I have asked a few other unexperienced people and they all seem to think the same but I know that with as unexperienced as I am, I'm likely wrong. I don't really have a horse in this race it just makes a difference on how I prep/preserve it and I need to learn. I will include a few photos from different angles to help. So....what is this thing/things?
  10. Dave_cooper79

    Fossil found on Compton bay Isle of wight

    Good morning, we found this fossil yesterday on the beach, I’d just like any input as to weather it is indeed a fossil as we are very new to fossil hunting, any help would be very much appreciated.
  11. MarielleK

    Help Identifying Tooth

    Can anyone id this tooth for me? I believe it to be from a dinosaur, but not sure which. No location was provided. Thank you!
  12. Hey guys! Thanks for the add, I am an amatuer hunter who is looking to expand my indentification base. Quick Q: I found a small, lightweight, white "fossil" in a gravel pit; it looks like caulking but the center of the specimen is starting to crystalize as stone so I know it isn't man made. The specimen looks like a mushroom at glance, any suggestions on what to look up for reference? I am currently unable to upload a pic.
  13. Vikki

    Benthic Foram ID

    Hi Everyone, While this is not a fossil, it is a very large benthic foram that I am having trouble idenifying. Could anyone either tell me what this is, or point me to somewhere or someone that could help? This specimen is not whole, there is an outer ring on the other specimens like this, that is a slightly different pattern to the one seen here. These are up to 2 or 3 mm across. I have found them in VERY high abundances and need to figure out what they are. Thanks!
  14. I found this piece of what I think is lower jaw exposed by eroding sand dunes next to an ephemeral lake in western NSW, Australia. The kind of place where aboriginal stone artefacts are also being exposed by the eroding dunes. While I am not knowledgeable about fossils, I am experienced with our current environment, animals and bone ID. This doesn’t match anything native living presently and isn’t right for something like cow or even camel either. The texture, surface, weight doesn’t match the feel of modern bone and it strongly sticks to the tongue. There is sand cemented to the bone that does not come off. I’ve had a look online and have an idea about what it might be but rather than influence any answers, I will leave it up to the experts here to provide much more educated answers. More pics in further posts.
  15. This rock was found on a Coastal path in the Isle of Man. Any idea what this could be?
  16. I have found this theropod tooth in my collection. I bought it as a Carcharodontosaurus tooth, but I'm not sure about the Identification. I would like to hear your opinion on the ID. The tooth is from the Kem Kem Formation (Morocco) and is 51mm (2") in lenght. Serrations on the distal carina can be recognized. Can you help me? Kind regards from Germany!
  17. AlexandraVW

    Identification help

    I was asked to share my findings from Bandera. These are the most interesting of the lot. (I apologize for the paper towel background, I had rinsed all of them off the night before because they were obviously covered in quite a bit of dirt) the second photo I’m unsure of wether or not it is any form or fossil or if it’s just a fancy mineral (all those deep stripes are full of tiny crystals) as for the bottom image, I know it’s definitely a large collection of small shells stuck together in a big clump but I’d like to know what shells exactly they’re from yknow. (Apparently it’s decided not to let me post my pictures so I’ll be adding them as replies)
  18. Virtual_Fossil

    Mostly new to this fossil thing

    I wish I had enough knowledge even to ask intelligent questions but I really don't. My wife found this on our property and we've curious about it. We have found a number of other fossils but none like this. Any information will be greatly appreciated.
  19. Maxalodon

    Possible Megalodon Chunk?

    Hi! I’m an amateur fossil hunter from the southern coast of GA. While on a dredged Island, I encountered a fragment of something. I believe this could be a carchorodon megalodon tooth fragment because of it’s smooth “enamel”, sandy texture, and thinkness. Dozens of megalodon teeth have been found in this area. Thoughts? This would help a lot!
  20. Trilobiting

    Fossil Fish ID

    I recently bought this fossilized fish online. I was wondering if anyone could identify the species and perhaps pinpoint the locality/formation. Thanks, Seann
  21. MamaByrd

    Bone or rock?

    I was hoping someone could help me identify this. My 6 year old found it in our backyard in Amarillo, Tx and he’s convinced he’s found something special. I have no idea if it’s anything at all, but I promised I would try to find out. For size reference, it’s about 2 inches long and 2 inches at its widest point. Thank you for your help!
  22. Alexander D.G

    Meteorite identification

    Hi everybody, I know this is more geological than paleological so ill keep it brief. Some years ago a local pointed me toward a spot where he claimed meteorite chuncks where found. At the given location a found a few rocks that matched his discription so i took them with me. Like probably most of you I am more familiar with fossils than meteorites so I was wondering if any of you know how i can find out if these rocks are actualy meteorite or just chucks of iron?
  23. elizoka

    Shark vertebrae

    Hello, I'm new to this forum and I come here to ask for your help. I am graduating in Biology and my final paper is about identifying species of shark vertebrae from an archaeological site. The thing is nobody from my lab knows how to work with it and I spent the whole last year trying to work with these centra but I realized it is a really hard work, almost impossible. I come here to ask if any of you know some good papers about shark vertebrae that could help in my work, or anything else that could help me in this situation. I'd be so thankful!
  24. Hi, What do you think about this "KEICHOUSAURUS" ? The pictures of the seller are not amazing.... The pictures are not shoot by me but by the seller Thank you for help me you are the best ! sorry for my bad english i'm french
  25. Paololitico1972

    Houston, we've had a problem here.. :-)

    Hi guys, I have an id problem with this fossil (pic attached). I do not know the period and the provenance. perhaps from China. can you help me? Thank you!! Paololitico
×
×
  • Create New...