Jump to content

Search the Community

Showing results for tags 'ammonoids'.

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. otodus, megalodon, shark tooth, miocene, bone valley formation, usa, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • Fossil ID
    • Fossil Hunting Trips
    • General Fossil Discussion
    • Partners in Paleontology - Member Contributions to Science
    • Fossil of the Month
    • Questions & Answers
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Is It Real? How to Recognize Fossil Fabrications
    • Member-to-Member Fossil Trades
    • Fossil News
  • Community News
    • Member Introductions
    • Member of the Month
    • Members' News & Diversions
  • General Category
    • Rocks & Minerals
    • Geology

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Terry Dactyll's Blog
  • Sir Knightia's Blog
  • MaHa's Blog
  • shakinchevy2008's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Lindsey's Blog
  • Back of Beyond
  • Ameenah's Blog
  • St. Johns River Shark Teeth/Florida
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • nicciann's Blog
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • barnes' Blog
  • xenacanthus' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • maybe a nest fossil?
  • farfarawy's Blog
  • Microfossil Mania!
  • blogs_blog_99
  • Southern Comfort
  • Emily's MotE Adventure
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • retired blog
  • andreas' Blog test
  • fossilman7's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • Hihimanu Hale
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • Stocksdale's Blog
  • PaleoWilliam's Blog
  • TyrannosaurusRex's Facts
  • The Community Post
  • The Paleo-Tourist
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • A Novice Geologist
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles
  • Walt's Blog
  • Between A Rock And A Hard Place
  • Rudist digging at "Point 25", St. Bartholomä, Styria, Austria (Campanian, Gosau-group)
  • Prognathodon saturator 101
  • Books I have enjoyed
  • Ladonia Texas Fossil Park
  • Trip Reports
  • Glendive Montana dinosaur bone Hell’s Creek
  • Test
  • Stratigraphic Succession of Chesapecten

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

  1. Alvrr.0

    My finds today

    Today i came to Lo Valdés, in Chile. A Jurassic formation based on abundant and relatively diverse ammonite assemblages. I found this!
  2. FossilAddict59

    Association plate

    This is a Carnian aged natural association of Traumatocrinus crinoids, and either Trachyceras, or Neoprotrachyceras Ammonoids from Guanling Guizhou province China.
  3. Ancient Ammonoids’ Complex Shell Designs May Have Aided Buoyancy Control University of Utah, April 13, 2021 Peterman, D.J., Ritterbush, K.A., Ciampaglio, C.N. et al., 2021, Buoyancy control in ammonoid cephalopods refined complex internal shell architecture. Science Reports 11, 8055 https://doi.org/10.1038/s41598-021-87379-5 Yours, Paul H.
  4. Hello everyone, Some time ago I was talking about a gastropod fossil with an individual online who thought that it was an ammonite, During this conversation one thing was brought up that I have wondered about for a long time but have not actually been able to answer, and that is what exactly do we consider an ammonite? I have always thought that ammonites are the cephalopods with an external shell containing complex sutures which occur throughout the Mesozoic, but people have pointed out that certain sites talk about ammonites going back to the Devonian. I have always thought that those were ammonoids but not necessarily ammonites, I don't know how I decided that this was the case and now I realize that this might be wrong. Does anyone know if those Paleozoic ammonoids are actually considered ammonites? What exactly is an ammonite and when do they appear? I would be very interested to hear what you guys have to say, any input is appreciated. Thank you!
  5. found in Lebanon Not found in any specific formation but, according to the geo map i have, the rocks are late Cretaceous(albian-vraconian) lots of gastropods, bivalves and brachiopods around. i want to say its some sort of ammonite, but as far as known fossils here ammonites arent some of them. the ridges on it seem to be connected to each other like a puzzle would be (image 3). also the fossil tapers(image 1). this is all the information i have. Note: To my knowledge no Ammonites have been recorded in Lebanon Thanks for your help guys!
  6. Hi there everyone. I have some pyritized ammonites I believed to be real, but now I'm having second thoughts... The ammonoids from the picture below are both supposed to be pyrite, but why is one so much "golder" than the other? I know it is a natural process, so not every piece will be exactly like the other, but my ammonites are all like the first one, bright gold, and they are all from the same seller. I just wanted to know if they are real. I mean, if that's their real color or if they are treated somehow or painted, etc... Thanks in advance!
  7. From the album: Triassic In Situ Pictures

    Triassic/Norian hardground with visible ammonoids. Genera are: Arcestes, Cladiscites, Rhacophyllites, Megaphyllites, Placites.
  8. andreas

    Upper Norian ammonoids.JPG

    From the album: Triassic In Situ Pictures

    Block with small upper Norian ammonoid cross sections
  9. andreas

    Psiloceras naumanni - Kopie.JPG

    From the album: Triassic In Situ Pictures

    Psiloceras naumanni, from the Hettangian of the Alps
  10. andreas

    Ladinian hashplate

    From the album: alpine triassic Ammonoids

    Hashplate of Ladinian age. The two smooth shelled ammonoids are inner cores of Gymnites cf. arthaberi(size= 3cm). The ammonoid top left is a Arpadites sp. A fragment of Protrachyceras cf. archelaus (darker brown spiny shell part down right) is evidence for Ladinian/Longobardian time(archelaus zone).
  11. From the album: alpine triassic Ammonoids

    Size is 40cm x 18cm. Austrotrachyceras austriacum MOJS. (ribbed with nodes, 4cm diameter) on the left lower half, Joannites sp., Arcestes gaytani, Megaphyllites sp., Mojsvarites agenor(on top), small Sirenites sp. and several orthocone Nautiloids and bivalves.
  12. From the album: alpine triassic Ammonoids

    Small slab (15cm x 11cm) showing a fauna from the Triassic/Carnian/ lower Julian zone of Trachyceras aon. The biggest black Syringoceras(Nautilus) measures about 4cm. Ammonoids on the slab are Celtites cf. steindachneri MOJS.(ribbed), Sphingites sp., Lobites elipticus, Sirenotrachyceras sp., Monophyllites sp., Arcestes sp., Asklepioceras sp.
  13. andreas

    Hypocladiscites subtornatus.jpg

    From the album: alpine triassic Ammonoids

    Hypocladiscites subtornatus (MOJS), 10cm diameter, together with Mojsvarites agenor(left side), Joannites sp. and orthocone Atractites sp. Triassic/lower Carnian aonoides zone. Hallstatt limestone of Austria.
  14. andreas

    Trachysagenites eximius.jpg

    From the album: alpine triassic Ammonoids

    Small slab with Trachysagenites cf. eximius MOJS.(Ammonoid with nodes, 2.5cm diameter) Associated with Arcestes sp., Megaphyllites sp., Paratropites sp., "Sandlingites" pilari and Isculites sp. Probably lower Tuvalian Dilleri Zone.
  15. andreas

    Tuvalian.jpg

    From the album: alpine triassic Ammonoids

    This part of a Triassic/Tuvalian ammonoid lense show probably the lower ammonoid zone(Dilleri Zone) of the Upper Carnian/Tuvalian stage. The upper half of the picture show a few Trachysagenites erninceus(ammonoids with stroger nodes) and a Tropites sp. core upon left. The lower part show Spirogmoceras sp., Traskites sp. and Paratropites cf. multecostatus with Isculites heimi(flat variant)
  16. From the album: alpine triassic Ammonoids

    Block with Syringoceras sp., Monophyllites simonyi, Arcestes sp., Megaphyllites sp. and several orthocone Nautiloids
  17. From the album: alpine triassic Ammonoids

    Placites(Paragymnites) symmetricum (MOJS.)(2x frontside)and the heteromorph ammonoid(it is no orthocone nautiloid) Rhabdoceras suessi HAUER, Upper Triassic/ Rhaetian 1
  18. From the album: alpine triassic Ammonoids

    Joannites cymbiformis(WULFEN), and Gryponautilus suessi MOJS. from the Upper Triassic/ Carnian/ Julian/ Aonoideszone. Hallstatt Formation/Austria
  19. From the album: alpine triassic Ammonoids

    Mojsvarites agenor(MUENSTER) and Pompeckjites layeri(HAUER) from the Hallstatt limestone of Austria. AGE= Upper Triassic/ Carnian/ Julian/ Aonoideszone
  20. andreas

    Halorites macer MOJS.

    From the album: alpine triassic Ammonoids

    Halorites macer MOJS., Upper Triassic, Norian/Alaunian II, Hallstatt formation/limestone of Austria
  21. Dear Fossil Forum members! This report deals with ammonoids from the former zone of Protrachyceras archelaus, which is our present Longobardian within the Ladinian stage of the marine Triassic timescale. Fig.1 A beautiful view of the surging “rock waves” of the incoming tectonic thrust sheets. The valley between the two Mountains in the middle of the picture marks the tectonic border between the mainly Triassic Hallstatt Unit and the Tirolikum Unit of the Totengebirgs nappe (in the background). History Since the beginning of the geological research within the Northern Calcareous Alps of Austria in the middle of the 19th century, about 500 species of Triassic ammonoids have been described in great Monographs by Mojsisovics, Hauer, Diener and other early authors. The ammonoids described therein came from upper Anisian to uppermost Norian aged parts of the Hallstatt limestone in Austria. Only in the lower to middle Ladinian period, a gap exists in the rich ammonoid record of these early researchers. This gap was explained by them as an interruption of sedimentation in the Ladinian time or tectonically reduced Ladinian strata during the genesis of the Alps. During these early days no one thought of a collecting gap because Ladinian ammonoid faunae were well described and known from several localities in the Southern Alps and the Bakony Mountains in Hungary. In 1882 Mojsisovics pictured ammonoids of Anisian and Ladinian age in his monographic work “Die Cephalopoden der mediterranen Triasprovinz”. The locations mentioned therein reach from the upper Anisian Schreyeralm limestone here in Austria to several Ladinian locations of the former Austrian provinces Südtirol, Lombardy and the kingdom of Hungary, which were also part of the former Austrian-Hungarian Monarchy at this time. Included in this work were also Scythian and Anisian ammonoids from Croatia and Bosnia-Herzegovina. Fig.2 Frontpage of Mojsisovics second great monograph from the year 1882. “The detailed accurate descriptions and illustrations provided by Mojsisovics are unquestionably the greatest contribution by a single author towards appreciating the astonishing beauty and variety of Triassic ammonoids” (cit. E. T. TOZER). Therefore every recent Triassic ammonoid researcher includes these old works in the standard literature of Triassic ammonoids. These old works were so to speak, a cornerstone for building the marine middle and upper Triassic timescale of our days. Unfortunately the early stratigraphic scales of Mojsisovics had some mistakes. Originally the stratigraphic position of the “Norian” stage was set by him below the Carnian. He used the term Norian for the time frame we today call Ladinian. Mojs. thought that most parts of today’s real Norian Hallstatt limestone of Austria were of the same age as real Ladinian strata in the Southern Alps. Some misinterpret location data, i.e. the wrong assumed position of the fineclastic Zlambach marls as base of the Hallstatt limestone led him to this wrong assumption. It was the Austrian geologist Alexander Bittner, a contemporary of Mojsisovics, who introduced the term Ladinian into literature by recognizing the false assumptions of Mojsisovics. The name Ladinian was chosen by Bittner after the Ladinian folk of the Southern Alps/Dolomites. At this time this area was also part of the Austrian-Hungarian monarchy with its capital Vienna and it’s so called “Vienna school” of the palaeontology institutions there. Probably this “miss take” of Mojsisovics led to some changed ammonoid zones within the Norian timescale, which last into the 20th century. It was the merit of the Canadian Triassic worker E.T. Tozer to correct this long lasting error by establish his own North American Triassic timescale, based only on North American, mainly Canadian Triassic ammonoid locations. The pelagic (deeper marine) Triassic sedimentation in Austria starts with the uppermost Anisian Flexo-Ptychites beds/lenses of the Schreyeralm limestone. This is also the base of the Hallstatt formation. The next frequent ammonoid lenses/layers occur within uppermost Ladinian/lower Carnian strata in this formation. The lower to middle Ladinian time frame in between was not well documented with ammonoids by the early researchers of the 19th century. At some historical locations the lower Ladinian part is/was given but was not really recognised by them. Later, modern researchers used microfossils to determine the placement of large parts of the grey to violet limestone in the Hallstatt formation into the Ladinian. Within the 20th century also scarce ammonoids were mentioned from these middle Ladinian strata. Fig.3 Anisian Schreieralm limestone with cross sections of Flexoptychites sp. Fig.4 Monophyllites sphaerophyllus (HAUER) from the Schreieralm limestone In general, ammonoid locations are not frequently known within the Ladinian part of the Hallstatt limestone. The most common fossils are Crinoid stem parts, Bivalves and Conodonts. The limestone facies consists of red to grey, sometimes yellowish to grey coloured limestone which is locally interbedded with marls. Also strongly condensed successions are common there and fossils also do not occur in continuous layers. Comparable Ladinian ammonoid faunas are also well known from similar Hallstatt type limestone in Greece and Italy. They show similar ammonoid faunae of Ladinian to Carnian age. In the Tethys realm the whole Ladinium is split into two subdivisions today. Upper Ladinian = Longobardian, Lower Ladinian = Fassanian, The historical zone ammonite of the Longobardian is Protrachyceras archelaus (LAUBE). Fig.5 Protrachyceras archelaus (LAUBE), in MOJSISOVICS “Die Cephalopoden der mediterranen Triasprovinz“ Wien 1882 Tafel XXXL, Fig. 1, But Protrachyceras archelaus LAUBE do occur within a longer time span and is therefore not perfect for stratigraphic aims. The old archelaus zone of the Ladinian was therefore changed into several Longobardian and Fassanian ammonoid zones of today. Within the Tethys realm the Longobardian is split into the ammonoid zones of: Daxatina canadensis Frankites regoledanus Protrachyceras longobardicum The Fassanian is split to the ammonoid zones of: Eoprotrachyceras gredleri Protrachyceras margaritosum Eoprotrachyceras curionii The ammonoids shown in this report come from a condensed fossil bed roughly inserted to the turquoise marked ammonoid zones of the timescale below. Historical Ladinian locations The condensed lower Carnian fossil lenses on the famous historical Feuerkogel show almost all a portion of the upper Ladinian at their base. This is also visible at other Lower Carnian locations within the Hallstatt limestone. During the last years Proarcestes sp. from a new location are sometimes shown for sale in the internet. They are sometimes identified as Arcestes sp. from Norian strata. But it is Proarcestes, therefore its Norian age is definitely wrong. I visited this new locality a few years ago. All locations there are of Ladinian age which is evidenced by Proarcestes cf. subtridentinus, Anolcites sp. and Epigymnites sp. This fauna is maybe slightly younger than the fauna shown later here in this report. Fig.6 Some Epigymnites arthaberi (MOJS.) and Epigymnites moelleri (MOJS.) from the above mentioned location The new location Several years ago a friend and I were lucky to find a hitherto unknown middle Ladinian ammonoid location during a prospecting trip. At this location the normal limestone succession is penetrated by several fractures and tectonic influence across the normal layer direction is also visible there. The fossil layer itself, in which ammonoids were frequent, consists of a very strong condensed upper part of lower Longobardian age, indicated by Protrachyceras longobardicum (MOJS.), and a lower part of a slightly older age indicated by scarce last descendants of Ptychites cf. pauli MOJS. which show deeply incised second and third lateral saddles similar Aristoptychites or Arctoptychites. Therefore the location is ranged by me to the transition of the ammonoid zones of Protrachyceras longobardicum and the underlying Eoprotrachyceras gredleri zone. Outside of the Tethys realm this is roughly comparable to the zones of Meginoceras meginae MC LEARN and Tuchodiceras poseidon (TOZER) of the North American timescale. Both zones are known from the Triassic of British Columbia in Canada too. Tozer, 1994, wrote that flat forms of Protrachyceras sikianum MC LEARN are comparable with Protrachyceras longobardicum (MOJS.) and the thicker morphs of Pt. sikianum MC LEARN with Pt. archelaus (LAUBE). Fig.7 View of the lower, sometimes more greyish limestone part of the fossil layer. The chisel points to a Sturia cf. semiarata MOJS. The furrows on the limestone block have their origin in the strong condensation of this limestone. One can recognize by this feature the underlying part of a condensed limestone (fossil) layer. Fig.8 In contrast to the above shown picture, a view of the underside of the overlaying layer where craters/hollows are visible. These two features can be used for recognizing up and downside in strongly condensed limestone. This feature is independent from the Triassic age of the rock and occurs in condensed limestone of Jurassic age too. The right hanging limestone block contains the fossil layer. Fig.9 Protrachyceras longobardicum (MOJS). in situ. View from the underside. The upper half of the ammonoid was totally dissolved due to the extreme condensation of the uppermost limestone layer at this location. In this location P. archelaus occurs very scarcely. It is no good indicator for stratigraphic aims here at all. A normal collector can use the following features to insert ammonoids into the Ladinian timescale. The frequent occurrence of Proarcestes sp. with a wavy end body chamber is a sign for Ladinian age. All forms of Sturia sp. are restricted to the late Anisian and Ladinian. The occurrence of real Ladinian Protrachyceras MOJS. The following picture will show you the main differences between Protrachyceras, Trachyceras and Neoprotrachyceras. Fig.10 In contrast to Trachyceras the venter furrow of real Protrachyceras MOJS. is bordered by nodes which show a single point per node. Protrachyceras are restricted to the Ladinian. Real Trachyceras show “broader” nodes with two or three points a node bordering the venter furrow. Trachyceras is frequent in the Lower Carnian (Julian) The genus Neoprotrachyceras KRYSTYN looks similar toTrachyceras but shows also just one point per node, sometimes changing up to two points per node within maturity. Neoprotrachyceras is restricted to the uppermost Lower Carnian and lowermost Upper Carnian (e.g. the genus Spirogmoceras SILBERLING in the Dilleri Zone of the North American Tuvalian) For a newbie collector it is difficult to find some fossils in the Hallstatt limestone at all. To place them into the right ammonoid zone is sometimes the easier part of the exercise. Fig.11 A weathered cross section of Proarcestes sp., visible at the limestone wall. Notice the bleached limestone surface in contrast to the colour of the fresh rock. Fig.12 Talus block with visible cross sections of ammonoids and orthocone nautiloids Natural picture size is 20cm. The edges of the fossils are deeply weathered in. This can be a sign that the fossils will probably split out well. Small idiomorphic Biotite crystals up to one mm in size, fine Feldspar crystals and thin greenish tuffitic crusts around some ammonoids and limestone clasts indicate a distant simultaneous volcanic event, adjacent to the palaeo Hallstatt realm. This is the very first observation of volcanic fallout/washout within the Hallstatt limestone column. Within other tectonic nappes in the Northern and Southern Calcareous Alps (Dolomites) volcanic (Tuffitic) ash layers are a frequent feature in Ladinian time. In the adjacent Tirolic nappe some volcanic/tuffitic events are evidenced near the base of the archelaus zone. The middle Ladinian fauna listed below was found at this location. Ammonoidea cf. Beyrichites sp. Eupinacoceras cf. damesi (MOJSISOVICS). Epigymnites cf. ecki (MOJS.) Epigymnites cf. breunneri (HAUER) Epigymnites arthaberi (MOJS.) Gymnites raphaelis TOMMASI Megaphyllites obolus MOJS. Monophyllites wengensis (KLIPSTEIN) cf. Silenticeras sp. Sturia cf. sansovinii MOJS. Sturia semiarata MOJS. Proarcestes ombonii TOMMASI Proarcestes subtridentinus MOJS. Proarcestes .sp. Procladiscites sp. Protrachyceras archelaus (LAUBE) Protrachyceras longobardicum MOJS. Protrachyceras sp. Ptychites cf. pauli MOJS. Ptychites cf. plusiae RENZ Michelinoceras sp. Atractites sp. Syringoceras cf. longobardicus Nautilus div. sp. Bivalves Daonella sp. Peribositra sp. Brachiopoda: Discinisca sp. Austriellula dilatata (SUESS) Important ammonoid species of the archelaus zone A beautiful, conspicuous faunal element of the archelaus zone is Protrachyceras longobardicum MOJS. the zone ammonoid of the Langobardicum Zone This species shows its maximum roughly in the lower middle of the former archelaus zone and can be used well for stratigraphic aims. As mentioned earlier in this report compressed variants of Protrachyceras sikanianum MC LEARN are comparable to Pt. longobardicum MOJS. The thicker variants of Pt. sikanianum rather resemble Pt. archelaus LAUBE. Fig. 13 Protachyceras longobardicum MOJS. with Proarcestes ombonii TOMMASI and Proarcestes cf. subtridentinus MOJS. Fig. 14 Pt. cf. longobardicum, some juvenile Arcestes sp. and the brachiopod Austriellula dilatata. Fig. 15 Epigymnites breunneri (HAUER) and Monophyllites wengensis (KLIPSTEIN) Fig. 16 Epigymnites arthaberi MOJS. and Monophyllites wengensis (KLIPSTEIN) Fig. 17 Gymnites raphaelis TOMMASI Fig. 18Discinisca sp. Looks like a fossil Limpet gastropod (Patellidae) but in reality it is an inarticulate Brachiopoda Fig. 19Sturia cf. semiarata together with Proarcestes cf. ombonii The most frequent faunal element of the Ladinian within the Tethys realm is Proarcestes BRONN. This genus occurs with several species up to Carnian strata. In our location Proarcestes subtridentinus MOJS. and Proarcestes ombonii TOMMASI was often found. The second one can reach the dimension of a small ball. Fig. 20 Proarcestes subtridentinus Fig. 21 Monophyllites wengensis (KLIPSTEIN) In the Hallstatt limestone this genus starts with the Anisian Monophyllites sphaerophyllus via the Ladinian M. wengensis up to the Carnian M. simonyi. Within the descendants of the Triassic Phylloceratida the ancestor of the Jurassic Ammonitida is supposed. Fig. 22 Ptychites cf. pauli MOJS. This species of Ptychites show deeply incised second and third Lateral saddles. I think that this is a feature of allmost all "late" species of Ptychites. Fig. 23 Ptychites cf. plusiae RENZ Fig. 24 Sageceras walteri I hope you have enjoyed this new report about the Ladinian strata of my favourite collecting area. Again I thank, “Danke Roger”, Fossil forum member “Ludwigia” for correcting my “Austrian” English. Kind regards Andreas Literature: ALMA, F. H. (1926). Eine Fauna des Wettersteinkalkes bei Innsbruck. Annalen des Naturhistorischen Museums in Wien, 40, 111-129. BACHMANN, GH, JACOBSHAGEN, V (1974) Zur Fazies und Entstehung der Hallstätter Kalke von Epidauros (Anis bis Karn; Argolis, Griechenland). Z Deutsch Geol Ges, 125: 195-223 DIENER, C. 1900: Die triadische Cephalopoden-Fauna der Schiechlinghöhe bei Hallstatt. Beiträge zur Paläontologie Österreich-Ungarns und des Orient 13 v. HAUER, F. (1888). Die Cephalopoden des bosnischen Muschelkalkes von Han Bulog bei Sarajevo. KK Hof-und Staatsdruckerei. von Hauer, F. (1888. KK Hof-und Staatsdruckerei. KITTL, E., 1908, Beiträge zur Kenntnis der Triasbildungen der nordöstlichen Dobrudscha. Denkschriften der mathematisch-naturwissenschaftlichen Klasse der kaiserlichen: Akademie der Wissenschaften, v. 81, p. 445- 532 KRISTAN-TOLLMANN, E, KRYSTYN, L (1975) Die Mikrofauna der ladinisch-karnischen Hallstätter Kalke von Sakliblei (Taurus-Gebirge, Türkei). Sitzungsber. Österr. Akad. Wiss. Math. Naturwiss. Kl. Abt. I, 184 (8-10): 259-340 KRYSTYN, L. Zur Ammoniten und Conodonten-Stratigraphie der Hallstätter Obertrias(Salzkammergut, Österreich), Verh.Geol. B.-A., Wien 1973 KRYSTYN, L (1983) The Epidauros Section (Greece) – a contribution to the conodont standard zonation of the Ladinian and Lower Carnian of the Tethys Realm. Schriftenreihe Erdwiss. Komm. Österr. Akad. Wiss., 5: 231-258. MOJSISOVICS, E. 1893: Die Cephalopoden der Hallstätter Kalke, Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, II Band, Wien 1893 MOJSISOVICS, E. 1896: Beiträge zur Kenntniss der obertriadischen Cephalopoden Faunen des Himalaya, Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch–naturwissenschaftliche Classe, 63, 575–701. Wien 1896, TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin, 467, 1–663. MOJSISOVICS, E. V. 1879. Vorlaufige kurze Übersicht der Ammoniten-Gattungen der mediterranen und juvavischen Trias. Verhandlungen der kaiserlich- königlichen geologischen Reichsanstalt, 1879(7):133–143. MOJSISOVICS, E. V. 1882. Die Cephalopoden der mediterranen Triasprovinz. Abhandlungen der kaiserlich-königlischen geologischen Reichsanstalt, 10, 1–322. NITTEL, P. (2006) Geo Alp, Vol.3, S93-145, Beiträge zur Stratigraphie und Mikropaläontologie der Mitteltrias der Innsbrucker Nordkette(Nördliche Kalkalpen Austria) PISTOTNIK, U. 1973-74 Fazies und Tektonik der Hallstätter Zone von Bad Ischl — Bad Aussee (Salzkammergut, Österreich) RENZ, C. – 1931 Die Bulogkalke der Insel Hydra, Ostpeloponnes RENZ, C. (1910): Die mesozoischen Faunen Griechenlands I. Die triadischen Faunen der Argolis, Palaeontographica 58, S. 1-103, Tab. 1-7, Fig. 15 RENZ, C. Neue griechische Trias Ammoniten aus den Verhandlungen der Naturforschenden Ges. Basel. S. 218- 255, Tab. 6-8, Abb. l, Basel. SALOPEK M. 1911,Über die Cephalopoden der mittleren Trias von Süddalmatien und Montenegro, Abhandlungen der .k.k geol. Reichsanstalt, Band 16, Heft 3 WEITSCHAT, W. & LEHMANN, U. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella Shales) of Spitsbergen With plates 1-6, 2 tables and 9 text-figures Mitt. Geol.-PaläonInst. Univ. Hamburg. Heft 54, S. 27-54 WENDT, J. (1970) Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys. N. Jb. Geol. Paläont. Mh., 1970/7: 433-448
  22. andreas

    Sageceras haidingeri (HAUER)

    From the album: alpine triassic Ammonoids

    Sageceras haidingeri (HAUER) from Carnian/Julian Hallstatt limestone in Austria.
  23. andreas

    (Ana)Tropites hauchecornei MOJS

    From the album: alpine triassic Ammonoids

    (Ana)Tropites hauchecornei MOJS. from Tuvalian(Triassic/Upper Carnian) Hallstatt limestone of Austria.
  24. andreas

    Bambanagites cf. dieneri MOJS

    From the album: alpine triassic Ammonoids

    Bambanagites cf. dieneri MOJS. from Norian/Alaunian II Hallstatt limestone of Austria. It was found together with Halorites macer MOJS. The shown ammonoid is the very first evidence of this genus outside of its type locality in India(Bambanag profile at Niti Pass)
  25. andreas

    Upper Tuvalian Ammonoid Fauna

    From the album: alpine triassic Ammonoids

    Back left to right: Hypocladiscites subtornatus, a few Jovites bosniensis, Discophyllites sp. div. Hoplotropites sp., Discotropites theron, Tropites haucecornei MOJS.
×
×
  • Create New...