Jump to content

Search the Community

Showing results for tags 'sicily'.

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. otodus, megalodon, shark tooth, miocene, bone valley formation, usa, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • Fossil ID
    • Fossil Hunting Trips
    • General Fossil Discussion
    • Partners in Paleontology - Member Contributions to Science
    • Fossil of the Month
    • Questions & Answers
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Is It Real? How to Recognize Fossil Fabrications
    • Member-to-Member Fossil Trades
    • Fossil News
  • Community News
    • Member Introductions
    • Member of the Month
    • Members' News & Diversions
  • General Category
    • Rocks & Minerals
    • Geology

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Terry Dactyll's Blog
  • Sir Knightia's Blog
  • MaHa's Blog
  • shakinchevy2008's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Lindsey's Blog
  • Back of Beyond
  • Ameenah's Blog
  • St. Johns River Shark Teeth/Florida
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • nicciann's Blog
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • barnes' Blog
  • xenacanthus' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • maybe a nest fossil?
  • farfarawy's Blog
  • Microfossil Mania!
  • blogs_blog_99
  • Southern Comfort
  • Emily's MotE Adventure
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • retired blog
  • andreas' Blog test
  • fossilman7's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • Hihimanu Hale
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • Stocksdale's Blog
  • PaleoWilliam's Blog
  • TyrannosaurusRex's Facts
  • The Community Post
  • The Paleo-Tourist
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • A Novice Geologist
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles
  • Walt's Blog
  • Between A Rock And A Hard Place
  • Rudist digging at "Point 25", St. Bartholomä, Styria, Austria (Campanian, Gosau-group)
  • Prognathodon saturator 101
  • Books I have enjoyed
  • Ladonia Texas Fossil Park
  • Trip Reports
  • Glendive Montana dinosaur bone Hell’s Creek
  • Test
  • Stratigraphic Succession of Chesapecten

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Found 12 results

  1. From the album: Fossil Amber and Copal: Worldwide Localities

    “Simetite” Costa dell’Ambra Pachino, Syracuse Province, Sicily, Italy Lower to Middle Miocene (~20-12 Ma) Chemical Composition: C: 79.25%, H: 10.41%, O: 10.34%, S: 0.52-2.46% Specific Gravity: 1.056-1.068 Specimen A (Left): 0.6g / 20x10x8mm Specimen B (Center): 0.2g / 10x7x4mm Specimen C (Right): 0.4g / 13x8x8mm Lighting: 140lm LED Entry six of ten, detailing various rare ambers from European, Asian, and North American localities. This is an amber with a rich history. Amber from the island of Sicily is thought to have been known of since the end of the Iron Age (43 A.D.), but did not initially see much use in terms of trade or lapidary: Baltic amber was imported and preferred over Simetite, due to its larger size in general, and also possibly because it was more readily available; Simetite was later traded with the Phoenicians. Lapidary work with this amber dates back to the early 1800s, and was worked using lathes or was carved by hand: rings, necklaces, cameos, and even boxes were crafted using Simetite. Simetite was named after the River Simeto, which originates from the center of the eastern half of the island, flows south past Mt. Etna, and empties into the Mediterranean Sea along Sicily's east coast: historically, this amber was frequently found along Sicily’s eastern coastline below the mouth of the river, and today can still be found in small quantities throughout Sicily’s eastern and southern shores. Although no extensive research has been performed, the in-situ deposits are believed to be located within the center of the island; amber has been noted to become dislodged from clay-filled soil particularly along streams, where it is carried to the ocean. The rivers primarily responsible for the displacement and relocation of amber are: the Simeto and Dittaino, which converge before reaching the sea near Catania, and the Fiume Salso which travels south from the island’s center to the southern shores near Licata. Precious little research has been done in regards to determining its botanical origin, however recent work by Inez Dorothe van der Werf (2016) has suggested the Fabaceae as the source of Simetite. Low levels of cativic, labdanic, and succinic acids are present within Simetite; it also contains varying levels of sulfur (in turn, altering levels of C, H, and O), believed to be due to sulfate-rich groundwater in the deposits: amber is a permeable substance and has been proven to absorb, retain, and release gases (Hopfenberg et.al., 1988, cited by Poinar 1992): theoretically, this property also extends to resins during their burial. There is a completely black form, that is incredibly rich in sulfur, up to 2.46%: compared to Baltic amber, this variety has nearly six times the concentration of sulfur, and roughly half as much oxygen; the color of this amber is determined mainly by its sulfur content. Sources: "The System of Mineralogy of James Dwight Dana 1837-1868: Descriptive Mineralogy"; p. 1005; Dana 1892 “Life in Amber”; pp. 10, 48; George O. Poinar Jr. 1992 “L’AMBRA SICILIANA Caratterizzazione del più importante materiale gemmologico italiano del Museo di Mineralogia della Sapienza”; pp. 14-17; David Leoni 2011 “The molecular composition of Sicilian amber”; Microchemical Journal 125; van der Werf, et. al. 2016

    © Kaegen Lau

  2. From the album: Fossil Amber and Copal: Worldwide Localities

    “Simetite” Costa dell’Ambra Pachino, Syracuse Province, Sicily, Italy Lower to Middle Miocene (~20-12 Ma) Chemical Composition: C: 79.25%, H: 10.41%, O: 10.34%, S: 0.52-2.46% Specific Gravity: 1.056-1.068 Specimen A (Left): 0.6g / 20x10x8mm Specimen B (Center): 0.2g / 10x7x4mm Specimen C (Right): 0.4g / 13x8x8mm Lighting: Longwave UV Entry six of ten, detailing various rare ambers from European, Asian, and North American localities. This is an amber with a rich history. Amber from the island of Sicily is thought to have been known of since the end of the Iron Age (43 A.D.), but did not initially see much use in terms of trade or lapidary: Baltic amber was imported and preferred over Simetite, due to its larger size in general, and also possibly because it was more readily available; Simetite was later traded with the Phoenicians. Lapidary work with this amber dates back to the early 1800s, and was worked using lathes or was carved by hand: rings, necklaces, cameos, and even boxes were crafted using Simetite. Simetite was named after the River Simeto, which originates from the center of the eastern half of the island, flows south past Mt. Etna, and empties into the Mediterranean Sea along Sicily's east coast: historically, this amber was frequently found along Sicily’s eastern coastline below the mouth of the river, and today can still be found in small quantities throughout Sicily’s eastern and southern shores. Although no extensive research has been performed, the in-situ deposits are believed to be located within the center of the island; amber has been noted to become dislodged from clay-filled soil particularly along streams, where it is carried to the ocean. The rivers primarily responsible for the displacement and relocation of amber are: the Simeto and Dittaino, which converge before reaching the sea near Catania, and the Fiume Salso which travels south from the island’s center to the southern shores near Licata. Precious little research has been done in regards to determining its botanical origin, however recent work by Inez Dorothe van der Werf (2016) has suggested the Fabaceae as the source of Simetite. Low levels of cativic, labdanic, and succinic acids are present within Simetite; it also contains varying levels of sulfur (in turn, altering levels of C, H, and O), believed to be due to sulfate-rich groundwater in the deposits: amber is a permeable substance and has been proven to absorb, retain, and release gases (Hopfenberg et.al., 1988, cited by Poinar 1992): theoretically, this property also extends to resins during their burial. There is a completely black form, that is incredibly rich in sulfur, up to 2.46%: compared to Baltic amber, this variety has nearly six times the concentration of sulfur, and roughly half as much oxygen; the color of this amber is determined mainly by its sulfur content. Sources: "The System of Mineralogy of James Dwight Dana 1837-1868: Descriptive Mineralogy"; p. 1005; Dana 1892 “Life in Amber”; pp. 10, 48; George O. Poinar Jr. 1992 “L’AMBRA SICILIANA Caratterizzazione del più importante materiale gemmologico italiano del Museo di Mineralogia della Sapienza”; pp. 14-17; David Leoni 2011 “The molecular composition of Sicilian amber”; Microchemical Journal 125; van der Werf, et. al. 2016

    © Kaegen Lau

  3. From the album: Fossil Amber and Copal: Worldwide Localities

    “Simetite” Costa dell’Ambra Pachino, Syracuse Province, Sicily, Italy Lower to Middle Miocene (~20-12 Ma) Chemical Composition: C: 79.25%, H: 10.41%, O: 10.34%, S: 0.52-2.46% Specific Gravity: 1.056-1.068 Specimen A: 0.6g / 20x10x8mm Lighting: 140lm LED Entry six of ten, detailing various rare ambers from European, Asian, and North American localities. This is an amber with a rich history. Amber from the island of Sicily is thought to have been known of since the end of the Iron Age (43 A.D.), but did not initially see much use in terms of trade or lapidary: Baltic amber was imported and preferred over Simetite, due to its larger size in general, and also possibly because it was more readily available; Simetite was later traded with the Phoenicians. Lapidary work with this amber dates back to the early 1800s, and was worked using lathes or was carved by hand: rings, necklaces, cameos, and even boxes were crafted using Simetite. Simetite was named after the River Simeto, which originates from the center of the eastern half of the island, flows south past Mt. Etna, and empties into the Mediterranean Sea along Sicily's east coast: historically, this amber was frequently found along Sicily’s eastern coastline below the mouth of the river, and today can still be found in small quantities throughout Sicily’s eastern and southern shores. Although no extensive research has been performed, the in-situ deposits are believed to be located within the center of the island; amber has been noted to become dislodged from clay-filled soil particularly along streams, where it is carried to the ocean. The rivers primarily responsible for the displacement and relocation of amber are: the Simeto and Dittaino, which converge before reaching the sea near Catania, and the Fiume Salso which travels south from the island’s center to the southern shores near Licata. Precious little research has been done in regards to determining its botanical origin, however recent work by Inez Dorothe van der Werf (2016) has suggested the Fabaceae as the source of Simetite. Low levels of cativic, labdanic, and succinic acids are present within Simetite; it also contains varying levels of sulfur (in turn, altering levels of C, H, and O), believed to be due to sulfate-rich groundwater in the deposits: amber is a permeable substance and has been proven to absorb, retain, and release gases (Hopfenberg et.al., 1988, cited by Poinar 1992): theoretically, this property also extends to resins during their burial. There is a completely black form, that is incredibly rich in sulfur, up to 2.46%: compared to Baltic amber, this variety has nearly six times the concentration of sulfur, and roughly half as much oxygen; the color of this amber is determined mainly by its sulfur content. Sources: "The System of Mineralogy of James Dwight Dana 1837-1868: Descriptive Mineralogy"; p. 1005; Dana 1892 “Life in Amber”; pp. 10, 48; George O. Poinar Jr. 1992 “L’AMBRA SICILIANA Caratterizzazione del più importante materiale gemmologico italiano del Museo di Mineralogia della Sapienza”; pp. 14-17; David Leoni 2011 “The molecular composition of Sicilian amber”; Microchemical Journal 125; van der Werf, et. al. 2016

    © Kaegen Lau

  4. From the album: Fossil Amber and Copal: Worldwide Localities

    “Simetite” Costa dell’Ambra Pachino, Syracuse Province, Sicily, Italy Lower to Middle Miocene (~20-12 Ma) Chemical Composition: C: 79.25%, H: 10.41%, O: 10.34%, S: 0.52-2.46% Specific Gravity: 1.056-1.068 Specimen C: 0.4g / 13x8x8mm Lighting: 140lm LED Entry six of ten, detailing various rare ambers from European, Asian, and North American localities. This is an amber with a rich history. Amber from the island of Sicily is thought to have been known of since the end of the Iron Age (43 A.D.), but did not initially see much use in terms of trade or lapidary: Baltic amber was imported and preferred over Simetite, due to its larger size in general, and also possibly because it was more readily available; Simetite was later traded with the Phoenicians. Lapidary work with this amber dates back to the early 1800s, and was worked using lathes or was carved by hand: rings, necklaces, cameos, and even boxes were crafted using Simetite. Simetite was named after the River Simeto, which originates from the center of the eastern half of the island, flows south past Mt. Etna, and empties into the Mediterranean Sea along Sicily's east coast: historically, this amber was frequently found along Sicily’s eastern coastline below the mouth of the river, and today can still be found in small quantities throughout Sicily’s eastern and southern shores. Although no extensive research has been performed, the in-situ deposits are believed to be located within the center of the island; amber has been noted to become dislodged from clay-filled soil particularly along streams, where it is carried to the ocean. The rivers primarily responsible for the displacement and relocation of amber are: the Simeto and Dittaino, which converge before reaching the sea near Catania, and the Fiume Salso which travels south from the island’s center to the southern shores near Licata. Precious little research has been done in regards to determining its botanical origin, however recent work by Inez Dorothe van der Werf (2016) has suggested the Fabaceae as the source of Simetite. Low levels of cativic, labdanic, and succinic acids are present within Simetite; it also contains varying levels of sulfur (in turn, altering levels of C, H, and O), believed to be due to sulfate-rich groundwater in the deposits: amber is a permeable substance and has been proven to absorb, retain, and release gases (Hopfenberg et.al., 1988, cited by Poinar 1992): theoretically, this property also extends to resins during their burial. There is a completely black form, that is incredibly rich in sulfur, up to 2.46%: compared to Baltic amber, this variety has nearly six times the concentration of sulfur, and roughly half as much oxygen; the color of this amber is determined mainly by its sulfur content. Sources: "The System of Mineralogy of James Dwight Dana 1837-1868: Descriptive Mineralogy"; p. 1005; Dana 1892 “Life in Amber”; pp. 10, 48; George O. Poinar Jr. 1992 “L’AMBRA SICILIANA Caratterizzazione del più importante materiale gemmologico italiano del Museo di Mineralogia della Sapienza”; pp. 14-17; David Leoni 2011 “The molecular composition of Sicilian amber”; Microchemical Journal 125; van der Werf, et. al. 2016

    © Kaegen Lau

  5. oilshale

    Syngnathus albyi Sauvage 1870

    The species of the family Syngnathidae belong to the order Syngnathiformes. The name "Syngnathiformes" means "conjoined-jaws". Syngnathiformes is an order of ray-finned fishes that includes among others pipefishes and seahorses (Syngnathidae), razorfishes (Centriscidae), trumpetfishes (Aulostomidae), and cornetfishes (Fistulariidae). Fishes of this order have elongate, narrow, bodies surrounded by a series of bony rings, and small, tubular mouths. The tubular mouth shows that these members of the Syngnathiformes fed on small Crustaceans and such, much as their modern-day relatives, the Seahorses, and Pipefishes. The family Syngnathidae includes the pipefishes and seahorses as well as the leafy and weedy sea dragons. The species of the subfamily Syngnathinae (Pipefishes) have elongated, thin, snake-like bodies with a highly modified skeleton formed into armored plating. The head is elongate with a long and slender, tubular snout; the mouth is small and toothless. The dorsal fin is the main part of locomotion. They are very weak swimmers in open water, moving slowly by means of rapid movements of the dorsal fin. The ventral fins are constantly absent; other fins may or may not be developed. The species of the subfamily Syngnathinae are abundant on coasts of the tropical and temperate zones. Most species of pipefish are usually 35–40 cm in length and generally inhabit sheltered areas in coral reefs, seagrass beds, and sandy lagoons. References: H. E. Sauvage (1870) Synopsis des poissons tertiaires de Licata. Anales des Sciences Naturalles, Zoologie et Paleontologie 14:1-26. H. E. Sauvage (1873) Memoire sur la faune ichthyologigue de la periode Tertiare et plus specialement sur les poissons fossiles d'Oran et de Licata. Annales des Sciences Geologiques 4:1-272. C. Arambourg (1925) Revision des Poissons fossiles de Liata (Sicile). 14:39-132. J. Gaudant, J.-P. Caulet, I. Di Geronimo, A. Di Stefano, E. Fourtanier, M. Romero, and M.-T. Venec-Peyre (1996) Analyse séquentielle d'un nouveau gisement de poissons fossiles du Messinien marin diatomitique : Masseria il Salto près de Caltagirone (Province de Catane, Sicile). Géologie Méditerranéenne 23(2):117-153
  6. oilshale

    Caranx scillae SAUVAGE 1873

    References: ARAMBOURG C. (1925) Révision des poissons fossiles de Licata (Sicile). Annales de Paléontologie, 14, 39-132. Landini W., Menesini E. (1984) Messinian marine fish communities of the Mediterranean Sea, Atti della Società Toscana di Scienze Naturali Serie A 91, 279-290 Woodward A. S. (1901) Catalogue of Fossil Fishes in the British Museum (Natural History), Part IV, 1-636.
  7. Steffen Herman

    Animal tooth ID

    Hello everyone, I was just searching the internet to find out what animal's tooth I found the other day, when I came across this lovely forum full of expertise. So I'd kindly like to ask if someone would help me identify the animal that was once the proud owner of this tooth. Some info: - Find place: southwestern Siciliy - age: some 2500 years / late Holocene - found in an archaeological context Any ideas greatly appreciated. Steffen
  8. oilshale

    ?Myctophum sp.

    From the album: Vertebrates

    ?Myctophum sp. Upper Miocene Messinian Licata Sicily Italy
  9. oilshale

    ?Myctophum sp.

    From the album: Vertebrates

    ?Myctophum sp. Upper Miocene Messinian Licata Sicily Italy
  10. oilshale

    Fish non det.

    From the album: Vertebrates

    Fish non det. Late Miocene Messinian Licata Sicily Italy
  11. oilshale

    "Myctophum" sp.

    From the album: Vertebrates

    "Myctophum" sp. Upper Miocene Messinian Licata Sicily Italy
×
×
  • Create New...