Jump to content

Search the Community

Showing results for tags 'Calamites'.



More search options

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. carcharodon, pliocene, cypresshead formation, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • General Fossil Discussion
    • Fossil Hunting Trips
    • Fossil ID
    • Is It Real? How to Recognize Fossil Fabrications
    • Partners in Paleontology - Member Contributions to Science
    • Questions & Answers
    • Fossil of the Month
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Member Fossil Trades Bulletin Board
    • Member-to-Member Fossil Sales
    • Fossil News
  • Gallery
  • Fossil Sites
    • Africa
    • Asia
    • Australia - New Zealand
    • Canada
    • Europe
    • Middle East
    • South America
    • United States
  • Fossil Media
    • Members Websites
    • Fossils On The Web
    • Fossil Photography
    • Fossil Literature
    • Documents

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Sir Knightia's Blog
  • Terry Dactyll's Blog
  • shakinchevy2008's Blog
  • MaHa's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • Lindsey's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Back of Beyond
  • St. Johns River Shark Teeth/Florida
  • Ameenah's Blog
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • nicciann's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • maybe a nest fossil?
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • xenacanthus' Blog
  • barnes' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • Emily's MotE Adventure
  • farfarawy's Blog
  • Microfossil Mania!
  • A Novice Geologist
  • Southern Comfort
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • The Crimson Creek
  • Stocksdale's Blog
  • andreas' Blog test
  • fossilman7's Blog
  • Hey Everyone :P
  • fossil maniac's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Hihimanu Hale
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • TyrannosaurusRex's Facts
  • PaleoWilliam's Blog
  • The Paleo-Tourist
  • The Community Post
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles

Calendars

  • Calendar

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Bony Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Found 52 results

  1. Hey guys. This is a pretty random selection of the Carboniferous fossils that my kids and I have collected. I have a lot at about this quality, and some better ones but we'd rather not sell them if we can help it. I hadn't planned on selling any of them, but life throws you curve balls and here we are. Whoever responds to this, thank you so much.
  2. Calamite-Fossil-18& a half inches-long

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Fossil Blue Creek Seam, North central Alabama Pennsylvanian Age (~ 320 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  3. Calamite-Fossil-18& a half inches-long

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Fossil Blue Creek Seam, North central Alabama Pennsylvanian Age (~ 320 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  4. Calamite-Fossil-18& a half inches-long

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Fossil Blue Creek Seam, North central Alabama Pennsylvanian Age (~ 320 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  5. Calamite-Fossil-18& a half inches-long

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Fossil Blue Creek Seam, North central Alabama Pennsylvanian Age (~ 320 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  6. Found this ages ago just lying alongside the road in Illinois... I think it was Illinois... heh... structure looks similar to a calamites horsetail IMO, but the symmetrical succession of the parts is curious. Any ideas?
  7. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  8. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  9. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photos 1, 2 and 3 show obverse; photo 4 reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  10. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photos 1, 2 and 3 show obverse; photo 4 reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  11. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photos 1, 2 and 3 show obverse; photo 4 reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  12. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photos 1, 2 and 3 show obverse; photo 4 reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  13. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  14. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photo 1 & 2 show obverse; photo 3 shows reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  15. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photo 1 & 2 show obverse; photo 3 shows reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  16. Calamites sp.

    From the album MY FOSSIL Collection - Dpaul7

    Calamites *Note: Photo 1 & 2 show obverse; photo 3 shows reverse. Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  17. Calamites

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  18. Calamites

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  19. Calamites

    From the album MY FOSSIL Collection - Dpaul7

    Calamites Rt 56 Bypass, Johnstown, Pennsylvania, USA Pennsylvanian Period (290-330 Million Years Ago) A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. Further organ genera belonging to sphenophytes include: (1) Arthropitys (stems which are preserved in a mineralised form (2) Astromyelon (permineralised rhizomes, distinguished from Arthropitys by the absence of a carinal canal) (3) Annularia and Asterophylites (form genera of leaf-whorls which are paraphyletic). This is possibly Calamites suckowi. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  20. Another odd "wood" fossil

    One more, if I may - This piece looks like a piece of wood! But it is in an area with a large amount of Calamites. (Lesser amounts of sigillaria and lepidodendron). A "root" section? Again, I am at a loss - and I will probably find MORE like this one. It is SOME part of a tree... Pennsylvanian period, of course. The 2nd photo is a close-up. Thank you for your attention!
  21. Odd wood fossil!

    This fossil is odd on a number of levels! The shale is a bit crumbly - but the "stick" that protrudes on the left side of figure 1 and 2 are VERY hard. Photo 3 and 4 are the reverse side... it looks like layers of wood! Found in an area heavy with calamites - Could these be pith casts? A rhizoid? I'm lost on this one!
  22. I found a nice group of Calamites - I am thinking Calamites suckovii - they ARE common in this area of Johnstown, Pennsylvania. The pattern appears to match my reference books... but I like to be sure if possible!
  23. It was VERY warm for February in Pennsylvania - So, a few minutes walk from my home, I went for some fossils. It rained once I got there, so I did NOT get to the "best" sport, but I did manage to get these and a few more! I am wondering... What is the best way to clean them? And any recommendations to "stabilize" them? The slate can be a bit brittle. Clear spray shellac-type material? Thanks for looking! This area has neuropteris, pecopteriss, calamites, sigillaria, lepidodendron, ginko leaves and all the other usual suspects! Hoping for more warm days... And I think we will have them!
  24. From the album MY FOSSIL Collection - Dpaul7

    FOSSIL STEM CALAMITES SITE LOCATION: Westphalian deposits in the area around Mons in Belgium TIME PERIOD: Carboniferous (311-315 Million Years Ago) Data: Calamites is a genus of extinct arborescent (tree-like) horsetails to which the modern horsetails (genus Equisetum) are closely related. Unlike their herbaceous modern cousins, these plants were medium-sized trees, growing to heights of more than 30 meters (100 feet). They were components of the understories of coal swamps of the Carboniferous Period (around 360 to 300 million years ago). A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. The trunks of Calamites had a distinctive segmented, bamboo-like appearance and vertical ribbing. The branches, leaves and cones were all borne in whorls. The leaves were needle-shaped, with up to 25 per whorl. Their trunks produced secondary xylem, meaning they were made of wood. The vascular cambium of Calamites was unifacial, producing secondary xylem towards the stem center, but not secondary phloem. The stems of modern horsetails are typically hollow or contain numerous elongated air-filled sacs. Calamites was similar in that its trunk and stems were hollow, like wooden tubes. When these trunks buckled and broke, they could fill with sediment. This is the reason pith casts of the inside of Calamites stems are so common as fossils. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
  25. From the album MY FOSSIL Collection - Dpaul7

    FOSSIL STEM CALAMITES SITE LOCATION: Westphalian deposits in the area around Mons in Belgium TIME PERIOD: Carboniferous (311-315 Million Years Ago) Data: Calamites is a genus of extinct arborescent (tree-like) horsetails to which the modern horsetails (genus Equisetum) are closely related. Unlike their herbaceous modern cousins, these plants were medium-sized trees, growing to heights of more than 30 meters (100 feet). They were components of the understories of coal swamps of the Carboniferous Period (around 360 to 300 million years ago). A number of organ taxa have been identified as part of a united organism, which has inherited the name Calamites in popular culture. Calamites correctly refers only to casts of the stem of Carboniferous/Permian sphenophytes, and as such is a form genus of little taxonomic value. There are two forms of casts, which can give mistaken impressions of the organisms. The most common is an internal cast of the hollow (or pith-filled) void in the centre of the trunk. This can cause some confusion: firstly, it must be remembered that a fossil was probably surrounded with 4-5 times its width in (unpreserved) vascular tissue, so the organisms were much wider than the internal casts preserved. Further, the fossil gets narrower as it attaches to a rhizoid, a place where one would expect there to be the highest concentration of vascular tissue (as this is where the peak transport occurs). However, because the fossil is a cast, the narrowing in fact represents a constriction of the cavity, into which vascular tubes encroach as they widen. The trunks of Calamites had a distinctive segmented, bamboo-like appearance and vertical ribbing. The branches, leaves and cones were all borne in whorls. The leaves were needle-shaped, with up to 25 per whorl. Their trunks produced secondary xylem, meaning they were made of wood. The vascular cambium of Calamites was unifacial, producing secondary xylem towards the stem center, but not secondary phloem. The stems of modern horsetails are typically hollow or contain numerous elongated air-filled sacs. Calamites was similar in that its trunk and stems were hollow, like wooden tubes. When these trunks buckled and broke, they could fill with sediment. This is the reason pith casts of the inside of Calamites stems are so common as fossils. Kingdom: Plantae Phylum: Pteridophyta Class: Equisetopsida Order: Equisetales Family: †Calamitaceae Genus: †Calamites
×