Search the Community: Showing results for tags 'eocene'.

More search options

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. carcharodon, pliocene, cypresshead formation, florida.
  • Search By Author

Content Type


  • Fossil Discussion
    • General Fossil Discussion
    • Fossil Hunting Trips
    • Fossil ID
    • Is It Real? How to Recognize Fossil Fabrications
    • Partners in Paleontology - Member Contributions to Science
    • Questions & Answers
    • Fossil of the Month
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Member Fossil Trades Bulletin Board
    • Member-to-Member Fossil Sales
    • Fossil News
  • Fossil Sites
    • Africa
    • Asia
    • Australia - New Zealand
    • Canada
    • Europe
    • Middle East
    • South America
    • United States
  • Fossil Media
    • Members Websites
    • Fossils On The Web
    • Fossil Photography
    • Fossil Literature
    • Documents


  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Sir Knightia's Blog
  • Terry Dactyll's Blog
  • shakinchevy2008's Blog
  • MaHa's Blog
  • Stratio's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • Lindsey's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Back of Beyond
  • St. Johns River Shark Teeth/Florida
  • Ameenah's Blog
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • nicciann's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • maybe a nest fossil?
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • Just looking for where to post a pic of a weird fossil we found
  • trilobite guy's Blog
  • xenacanthus' Blog
  • barnes' Blog
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • Emily's MotE Adventure
  • farfarawy's Blog
  • Microfossil Mania!
  • A Novice Geologist
  • Southern Comfort
  • Eli's Blog
  • andreas' Blog
  • Stocksdale's Blog
  • fossilman7's Blog
  • Hey Everyone :P
  • fossil maniac's Blog
  • Piranha Blog
  • xonenine's blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Hihimanu Hale
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • TyrannosaurusRex's Facts
  • PaleoWilliam's Blog
  • The Paleo-Tourist
  • The Community Post
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed


  • Calendar


  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians
    • Corals
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
  • Forams
  • Graptolites
  • Molluscs
    • Ammonoids & Nautiloids
    • Bivalves
    • Gastropods
    • Other Molluscs
  • Sponges
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Vertebrates
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Bony Fishes
    • Mammals
    • Sharks & Rays
    • Other Vertebrates
  • Other Chordates

Found 449 results

  1. My family and I usually visit the Frio River in Leakey, Tx every summer. A few years ago we were all set to go swimming but upon arriving we saw that the part of the river we usually frequent had dried up. I decided to make the best of it and explored the dried river bed looking for anything interesting when this isolated chunk of rock caught my eye. I picked it up off the ground, took it home with me, put it in a drawer and forgot about it. A few months ago I found it while doing some cleaning and realized it had to be something more than just an oddly shaped rock. I cleaned it with water and a toothbrush after reading online that that's a simple way to clean fossils. A friend of mine with limited knowledge of fossils suspected it was some kind of fossilized coral or sponge. What I originally thought was matrix does look a lot like syringopora, but I can't find pictures of any prehistoric coral fossils that match the appearance of that hot dog in the center! I saw a sperm whale tooth on this forum that looks similar but I'm not sure if what I found feels like a tooth. It feels way too smooth to me. I love fossils and I own some shark teeth, coprolite, and a little trilobite, but those were all bought. If whatever this is turns out to be something, then it would be the first fossil I've ever acutally found myself. I'm still really new to this so please forgive me if I am asking silly questions or submitting this incorrectly. Any insight would be greatly appreciated!
  2. It has been a couple years since I made time to pull together some photos of personal finds to share. Inhospitable climes this past weekend afforded me the opportunity to organize a little eye candy for your viewing pleasure, arranged from geologically oldest to youngest. Provenance - for brevity, I'll just refer to the sites collectively as "Gulf of Mexico Watershed, Texas". Thanks for understanding and respecting. For more detail, go to Youtube and pull up Johnny Cash's "I've Been Everywhere". I will say that the Texas Outback comes with its perils, as shown below. Some of the pics are grainy due to fleeting photo opps, but you can see a big gator sliding into the water, a curious tarantula, a snake (water mocassin?) exercising the "stand your ground" law, and a rattler that became tablefare at the Woehrhaus. I even had a "Hugh Glass" moment with an injured hog while out solo gigging this year, and was glad to come out on top. I should be able to complete photo adds to this thread today in short bursts.
  3. My youngest son goes fossil hunting without me these days and a few years ago he went to the parachute member of the Green River Formation and found some fossil leafs. He asked me the other day if I would do a prep job on a leaf he had found. I said "sure". So, he brought it over and I did some 'prep majic on it. It didn't look too good when I first took a gander at it, but I figured I could get some tips out of it and expose the stem. The more work I did on it the better it got. The bad thing was the leaf itself was not in very good preservation with the rock very discolored around the leaf making it hard to see. So, the mind got to thinkin and then I decided to do a bit of artwork around it. I have to say that was a good idea. Still have a ways to go but its coming along quite nice!!! One of those fossils where the more you do the better it gets. RB
  4. Here it is, the show booth layout! What do yah think? did we get enough fish this year? I am kind of fond of the table, it is fully lit all the way around the inside with LED lights!
  5. Hi Folks, I am taking the opportunity of terrible weather here to sort out some of my fossil finds from last year. This set of specimens comes from the Middle Eocene Allenby formation on Allenby Road near Princeton British Columbia Canada. The main structures I see are the shiny patches of material that resemble the slickinside we see in our concretions here on Vancouver Island. The material does not appear to have much depth. The rock is a cherty mudstone. Patches of sheet like algae? Mud striations?
  6. The order Beryciformes, a poorly understood group, is represented in Monte Bolca with at least two species: Eoholocentrum and Berybolcensis, both from the subfamily Holocentrinae or squirrelfish (L. Sorbini, 1984). Both species seemed to be largely or entirely nocturnal and lived in deep marine waters; their eyes are amazingly large. Lit.: Sorbini, L., 1979. Les Holocentridae du Monte Bolca. III. Berybolcensis leptacanthus (Agassiz). Studi e Richerche sui Giacimenti Terziari di Bolca 4, 19–35.
  7. Diodon holocanthus, inflated (own work of Ibrahim lujaz from Rep. Of Maldives) Diodon nicthemerus (own work of user Springcold at da.wikipedia) Porcupinefish belong to the family Diodontidae within the Tetraodontiformes order and are also commonly called blowfish. They have the ability to swallow water or air and to inflate their body making it harder for predators to swallow them. When the fish inflates, sharp spines radiate outwards as a second defense mechanism. Some species are poisonous, having tetrodotoxin in their internal organs. Fugu is the Japanese word for pufferfish and is also a Japanese dish made out of the pufferfish meat. Because fugu is lethally poisonous if prepared incorrectly, fugu has become one of the most celebrated and notorious dishes in Japanese cuisine. Porcupinefish are medium to large sized fish and are found in shallow temperate and tropical seas worldwide. Monte Bolca is an important lagerstatte for Tetraodontiformes with Diodon tenuispinus as one of its oldest records.
  8. Hi all! Here are three sharkteeth I have from Balegem, Belgium. The sharkteeth there are from the Eocene. Those will soon go into a trade, so I need to get an ID quickly! Right now, the ID I have is this (from left to right): Physogaleus latus, Lamna nasus, Jaekelotodus trigonalis. Are those ID correct? Best regards, Max
  9. Most of my fossil collecting has been Invertebrate Macrofossil collecting. Very little attention has been made to the little fossils. It is always a good idea to expand your knowledge, leave your comfort zone, go somewhere you have never been before. I find that not paying much attention to Microfossils has been a mistake. So when I saw an interesting Nummulites fossil slab for sale; I chose to purchase it. The rough cut specimen looked like it could reveal more, with a little attention. What I chose to do is give it a good high luster lap polish to see the results. So much more detail was made. Where my specimen came from was Northern Spain, in or near the Pyrenees Mtns. near Aragon. The seller didn't give much info and what he did give was in Spanish. Chasing information down on the internet I found the mixed fossils were Nummulites sp. (large ones) and Alveolina sp. (smaller ones) I have some photos of my results to share. Before polishing it looked like this: After polishing the fossils clarified, here are some closeups: Apparently these fossils are common in Spain, neighboring France and other places in the world. This is an old engraving: In Spain, the Limestone the Nummulites are in, is used as building materials like blocks, steps, pavers. I will need to do more studying of these neat looking spiral tests.
  10. Pesciarichthys baldwinae Sorbini & Tyler, 1998 was redescribed in 2012 by Bannikov & Tyler and the new genus Frigosorbinia established. Lit.: Bannikov. A. & Tyler, J.C. (2012): REDESCRIPTION OF THE EOCENE OF MONTE BOLCA, ITALY, SURGEON FISH PESCIARICHTHYS PUNCTATUS PERCIFORMES, ACANTHURIDAE, AND A NEW GENUS, FRIGOSORBINIA, FOR P. BALDWINAE. Studi e ricerche sui giacimenti terziari di bolca, XIV - Miscellanea Paleontologica, 11, 2012
  11. Here it is my pleasure to quote Auspex: "Messelornis is often incorrectly referred to as the "Messel Rail". Although rails are in the same order (Gruiformes, along with the cranes), its closest living relative is the Sunbittern of the American tropics. There are four named species (of two genera) in the family Messelornithidae: Messelornis cristata (only from Messel), M. nearctica (from the Eocene Green River Fm., USA), M. russelli (from the Paleocene of France), and Itardiornis hessae (from the Late Eocene-Early Oligocene fissure-fillings in Quercy, France). According to Gerald Meyer in Paleocene Fossil Birds, there are over 500 specimens of M. cristata known from the Messel pit, constituting roughly half of the bird fossils found there. Interestingly, no juvenile specimens are known from there, which suggests that they did not nest nearby." Lit.: Angelika Hesse (1988): Die Messelornithidae - eine neue Familie der Kranichartigen (Aves: Gruiformes: Rhynocheti) aus dem Tertiär Europas und Nordamerikas. In: Journal für Ornithologie, 129 (1): 83-95; Berlin. Angelika Hesse (1990): Die Beschreibung der Messelornithidae (Aves: Gruiformes: Rhynocheti) aus dem Alttertiär Europas und Nordamerikas. Senckenbergische Naturforschende Gesellschaft. ISBN 9783924500672 Gerald Mayr (2009): Paleogene Fossil Birds. Springer. ISBN 9783540896272
  12. This is a great I.d. site
  13. Hello TFF! I just wanted to take a minute to share with everyone some of our finds from 2016. I do most of my digging up in Kemmerer, WY trying my hand at fossil fishes. 2016 was a pretty exceptional year in that along with our standard hundreds of 18" fish and thousands of split fish we pulled 2 VERY LARGE specimens. quite rare really. it averages out to about 1 every 2 or 3 years normally, so 2 in one summer is AMAZING! These panels have all been finished and are ready to hit the market along with the large gar and the croc! Fingers crossed that they sell so we can open up next year! I hope you all enjoy coming along. ALL of these panels feature 100% natural fish with 0% restoration. NO PAINT, a few have been inlaid though. In the last picture, the branch does have around 2% restoration because it was in multiple pieces needing to be glued.
  14. I have some fossils from the Green River that I collected several years ago. One of them had a nice full Knightia on it but the matrix was so thick that I decided to split it. When I did, I found these two small lumps on the newly split surface. The one on the right looks like it has bony fragments in it, I was wondering if these were some sort of fish poop. Nothing else shows up on this layer.
  15. The misses and I went to quartzite for a small vacation and just got back yesterday. We also went last year and had so much fun that we decided to go again. I have friends that have been going there every year for the last 18 years and it was great to meet up again. I use to sell there for about 8 or 9 years but quit once I realized it was turning into a job. I use to do 7 or 8 shows a year and went down to 0 for the last 10 years. I did take some fossils with me. I had a spot about 4 feet wide. Just to keep me a busy, kinda. I did help my buddy do quite a bit of selling, but for me, I was just there to sip wiskey, shoot the poop and have fun. I didn't even have to try and sell the crabs I took with me. Once people pick them up and hold them in their hands and see them close up, they sell themselves! The crabs I sold payed for the trip and the stuff I bought and the next two trips also. Just a neat hobbie. I took 17 prepped out crabs with me and sold 13 of them. Looks like the price for crabs are going to go up next year yet again!!! I really cant believe how much I get for these. But all in all it was a great trip, made lots and lots of moneys and had a super good time with lots of drinks, lots of good food and lots of good times.
  16. These are a few of the pdf files (and a few Microsoft Word documents) that I've accumulated in my web browsing. MOST of these are hyperlinked to their source. If you want one that is not hyperlinked or if the link isn't working, e-mail me at and I'll be happy to send it to you. Please note that this list will be updated continuously as I find more available resources. All of these files are freely available on the Internet so there should be no copyright issues. Articles with author names in RED are new additions since January 25, 2017. General Papers in Paleontology Archaean Eon Allwood, A.C., et al. (2009). Controls on development and diversity of Early Archaean stromatolites. PNAS, Vol.106, Number 24. Altermann, W. and J. Kazmierczak (2003). Archaean microfossils: a reappraisal of early life on Earth. Research in Microbiology, 154. Awramik, S.M. (1992). The oldest records of photosynthesis. Photosynthesis Research, 33. Brasier, M., et al. (2006). A fresh look at the fossil evidence for early Archaean cellular life. Phil.Trans.R.Soc.Lond. B, 361. Brasier, M., et al. (2004). Earth's Oldest (~3.5 Ga) Fossils and the 'Early Eden Hypothesis': Questioning the Evidence. Origins of Life and Evolution of the Biosphere, 34. Brocks, J.J., et al. (1999). Archaean Molecular Fossils and the Early Rise of Eukaryotes. Science, Vol.285. Knauth, L.P. (2005). Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219. Moorbath, S. (2005). Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry, 30. Sankaran, A.V. (2002). The controversy over early-Archaean microfossils. Current Science, Vol.83, Number 1. Schopf, J.W. (2006). Fossil evidence of Archaean life. Phil.Trans.R.Soc. B, 361. Schopf, J.W. (1993). Microfossils of the Early Archaean Apex Chert: New Evidence of the Antiquity of Life. Science, Vol.260. Schopf, J.W., et al. (2007). Evidence of Archaean life: Stromatolites and microfossils. Precambrian Research, 158. Sharma, M. and Y. Shukla (2009). The evolution and distribution of life in the Precambrian eon - Global perspective and the Indian record. J.Biosci., 34. Stueken, E.E., D.C. Catling and R. Buick (2012). Contributions to late Archaean sulphur cycling by life on land. Nature Geoscience, published on-line. Waldbauer, J.R., D.K. Newman and R.E. Summons (2011). Microaerobic steroid biosynthesis and the molecular record of Archaean life. PNAS, Vol.108, Number 33. Proterozoic Eon Ediacaran Period Barroso, F.R.G., et al. (2014). First Ediacaran Fauna Occurrence in Northeastern Brazil (Jairabas Basin, ?Ediacaran-Cambrian): Preliminary Results and Regional Correlation. Annals of the Brazilian Academy of Sciences, 86(3). Bottjer, D.J. (2002). 2. Enigmatic Ediacara Fossils: Ancestors or Aliens? In: Exceptional Fossil Preservation. Bottjer, D.J., et al. (eds.), Columbia University Press, New York. Clapham, M.E., G.M. Narbonne and J.G. Gehling (2003). Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29(4). Droser, M.L. and J.G. Gehling (2015). The advent of animals: The view from the Ediacaran. PNAS, Vol.112, Number 16. Droser, M.L., J.G. Gehling, and S.R. Jensen (2006). Assemblage palaeoecology of the Ediacara biota: The unabridged edition?. Palaeoecology, Palaeoclimatology, Palaeoecology, 232. Dzik, J. The Verdun Syndrome: Simultaneous Origin of Protective Armor and Infaunal Shelters at the Precambrian-Cambrian Transition. Dzik, J. (2003). Anatomical Information Content in the Ediacaran Fossils and Their Possible Zoological Affinities. Integr.Comp.Biol., 43. Gehling, J. (2015). First Fossil Animals - Ediacara Fauna of South Australia. Flinders Ranges Treasures. Glaessner, M.F. and M. Wade (1966). The Late Precambrian Fossils from Ediacara, South Australia. Palaeontology, Vol.9, Part 4. Grazhdankin, D. (2004). Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30(2). Jensen, S. and T. Palacios (2016). The Ediacaran-Cambrian trace fossil record in the Central Iberian Zone, Iberian Peninsula. Comunicacoes Geologicas, 103, Especial 1. Knoll, A.H., et al. (2006). The Ediacaran Period: a new addition to the geologic time scale. Lethaia, Vol.39. Knoll, A.H., et al. (2004). A New Period for the Geologic Time Scale. Science, Vol.305. Liu, A.G. (2011). Reviewing the Ediacaran fossils of the Long Mynd, Shropshire. Proceedings of the Shropshire Geological Society, 16. Meert, J.G., et al. (2010). Glaciation and ~770 Ma Ediacara (?) Fossils from the Lesser Karatau Microcontinent, Kazakhstan. Gondwana Research, xx-xxxx. Narbonne, G.M. (2005). The Ediacara Biota: Neoproterozoic Orgin of Animals and Their Ecosystems. Annu.Rev. Earth Planet.Sci., 33. Narbonne, G.M. (2004). Modular Construction of Early Ediacaran Complex Life Forms. Science, Vol.305. Narbonne, G.M. and J.G. Gehling (2003). Life after snowball: The oldest fossil Ediacaran fossils. Geology, Vol.31, Number 1. O'Brien, S.J. and A.F. King (2004). Ediacaran Fossils from the Bonavista Peninsula (Avalon Zone), Newfoundland: Preliminary Descriptions and Implications for Regional Correlation. Current Research (2004) Newfoundland Department of Mines and Energy, Geological Survey Report 04-1. Peterson, K.J., B. Waggoner and J.W. Hagadorn (2003). A Fungal Analog for Newfoundland Ediacaran Fossils. Integr.Comp.Biol., 43. Peterson, K.J., et al. (2008). The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Phil.Trans.R.Soc. B, 363. Retallack, G.J. (2013). Ediacaran life on land. Nature, Vol.493. Retallack, G.J. (1994). Were the Ediacaran fossils lichens? Paleobiology, 20(4). Schiffbauer, J.D., J.W. Huntley and G.R. O'Neil (2016). The Latest Ediacaran Wormworld Fauna: Setting the Ecological Stage for the Cambrian Explosion. GSA Today, Vol.26, Number 11. Seilacher, A., D. Grazhdankin and A. Legouta (2003). Ediacaran biota: The dawn of animal life in the shadow of giant protists. Palaeontological Research, Vol.7, Number 1. Wood, R. and A. Curtis (2015). Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology, 13. Phanerozoic Eon Paleozoic Era General Paleozoic Brett, C.E. and S.E. Walker (2002). Predators and Predation in Paleozoic Marine Environments. Paleontological Society Papers, Vol.8. Eldredge, N. (1971). The Allopatric Model and Phylogeny in Paleozoic Invertebrates. Evolution, Vol.25, Number 1. Schonlaub, H.-P. and H. Heinisch (1994). The Classic Fossiliferous Palaeozoic Units of the Eastern and Southern Alps. IUGS Subcomm. Silurian Stratigraphy, Field Meeting 1994, Bibl.Geol. B.-A., 30. Smith, M.P., P.C.J. Donoghue and I.J. Sansom (2002). The spatial and temporal diversification of Early Palaeozoic vertebrates. In: Palaeobiogeography and Biodiversity Change: the Ordovician and Mesozoic-Cenozoic Radiations. Crame, J.A. and A.W. Owen (eds.), Geological Society, London, Special Publications, 194. Ye, H., et al. (1996). Late Paleozoic Deformation of Interior North America: The Greater Ancestral Rocky Mountains. AAPG Bulletin, Vol.80, Number 9. Cambrian Period Blair, J.E. and S.B. Hedges (2004). Molecular Clocks Do Not Support the Cambrian Explosion. Molecular Biology and Evolution, Vol.22, Number 3. Davidek, K., et al. (1998). New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary. Geol.Mag., 135(3). Dzik, J. (2005). Behavioral and anatomical unity of the earliest burrowing animals and the cause of the "Cambrian Explosion". Paleobiology, 31(3). Hagadorn, J.W. Chengjiang: Early Record of the Cambrian Explosion. Hagadorn, J.W. (2002). 4. Burgess Shale: Cambrian Explosion in Full Bloom. Jacobs, D.K., et al. (2005). Terminal addition, the Cambrian radiation and the Phanerozoic evolution of bilaterian form. Evolution & Development, 7:6. Kirschvink, J.L. and T.D. Raub (2003). A methane fuse for the Cambrian explosion: carbon cycles and true polar wander. C.R. Geoscience, 335. Landing, E., et al. (2000). Cambrian-Ordovician boundary age and duration of the lowest Ordovician Tremadoc Series based on U-Pb zircon dates from Avalonian Wales. Geol.Mag., 137(5). Lieberman, B.S. (2008). The Cambrian radiation of bilaterians: Evolutionary origins and palaeontological emergence; earth history change and biotic factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 258. Marshall, C.R. (2006). Explaining the Cambrian "Explosion" of Animals. Annu.Rev. Earth Planet.Sci., 34. Mitchell, R.N., et al. (2015). Was the Cambrian Explosion Both an Effect and an Artifact of True Polar Wander? American Journal of Science, Vol.315. Morris, S.C. (2006). Darwin's dilemma: the realities of the Cambrian 'explosion'. Phil.Trans.R.Soc. B, 361. Morris, S.C. (2000). The Cambrian "explosion": Slow-fuse or megatonnage? PNAS, Vol.97, Number 9. Morris, S.C. (1993). Ediacaran-Like Fossils in Cambrian Burgess Shale-Type Faunas of North America. Palaeontology, Vol.36, Part 3. Peng, S., L.E. Babcock and R.A. Cooper (2012). Chapter 19. The Cambrian Period. In: The Geologic Time Scale 2012. F.M. Gradstein, et al. (eds.), Elsevier B.V. Phoenix, C. (2009). Cellular differentiation as a candidate "new technology" for the Cambrian Explosion. Journal of Evolution and Technology, 20(2). Plotnick, R.E., S.Q. Dornbos and J. Chen (2010). Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology, 36(2). Shu, D.-G. (2008). Cambrian explosion: Birth of tree of animals. Gondwana Research, 14. Shu, D.-G., et al. (2009). The earliest history of the deuterostomes: the importance of the Chengjiang Fossil-Lagerstatte. Proc.R.Soc. B, published online. Valentine, J.W. (2002). Prelude to the Cambrian Explosion. Annu.Rev. Earth Planet.Sci., 30. Valentine, J.W., et al. (1999). Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126. von Bloh, W., C. Bounama and S. Franck (1963). Cambrian explosion triggered by geosphere-biosphere feedbacks. Geophysical Research Letters, Vol.30, Number 18. Yang, B. (2014). Cambrian small shelly fossils of South China and their application in biostratigraphy and palaeobiogeography. Ph.D. Dissertation - Freie Universitat Berlin. Zhang, X.-L. and D.-G. Shu (2013). Causes and consequences of the Cambrian explosion. Science China - Earth Sciences, 57(5). Ordovician Period Brocke, R., et al. (1995). First Appearance of Selected Early Ordovician Acritarch Taxa from Peri-Gondwana. In: Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Cooper, J.D., M.L. Droser and S.C. Finney (eds.), The Pacific Section Society for Sedimentary Geology (SEPM), Fullerton, California, USA. cocks, L.R.M. (1985). The Ordovician-Silurian Boundary. Episodes, Vol.8, Number 2. Connolly, S.R. and A.I. Miller (2002). Global Ordovician faunal transitions in the marine benthos: ultimate causes. Paleobiology, 28(1). Cooper, R.A., G.S. Nowlan and S.H. Williams (2001). Global Stratotype Section and Point for base of the Ordovician System. Episodes, Vol.24, Number 1. Elliot Smith, M., B.S. Singer and T. Simo (2011). A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition. Earth and Planetary Science Letters, 311. Farrell, U.C., et al. (2009). Beyond Beecher's Trilobite Bed: Widespread pyritization of soft tissues in the Late Ordovician Taconic foreland basin. Geology, 37. (Thanks to piranha for finding this one!) Finnegan, S., S. Peters and W.W. Fischer (2011). Late Ordovician-Early Silurian Selective Extinction Patterns in Laurentia and Their Relationship to Climate Change. In: Ordovician of the World. Gutierrez-Marco, J.C., I. Rabano and D. Garcia-Bellido (eds.), Cuadernos del Museo Geominero, 14. Fortey, R.A. and L.R.M. cocks (2003). Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth-Science Reviews, 61. Havlicek, V. (1989). Climatic changes and development of benthic communities through the Mediterranean Ordovician. Sbor.geol. ved, Geologie 44. Melott, A.L., et al. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? International Journal of Astrobiology, 3(1). Miller, A.I. and S.R. Connolly (2001). Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology, 27(4). Miller, A.I. and S. Mao (1995). Association of orogenic activity with the Ordovician radiation of marine life. Geology, Vol.23, Number 4. Niocaill, C.M., B.A. van der Pluijm and R. Van der Voo (1997). Ordovician paleogeography and the evolution of the Iapetus ocean. Geology, Vol.25, Number 2. Rasmussen, C.M.O. and D.A.T. Harper (2011). Interrogation of distributional data for the End Ordovician crisis interval: where did disaster strike? Geological Journal, published on-line in Wiley Online Library. Silurian Period Calner, M. (2008). Silurian global events - at the tipping point of climate change. In: Mass extinctions. A.M.T. Elewa (ed.), Springer-Verlag, Berlin and Heidelberg. Calner, M. (2005). A Late Silurian extinction event and anachronistic period. Geology, Vol.33, Number 4. Cronin, T.C. (1971). A Study of the Silurian System and a Silurian Reef in West Texas and Southern New Mexico. Masters Thesis - Texas Tech University. Woodcock, N.H. (2000). Chapter 1. Introduction to the Silurian. In: British Silurian Stratigraphy. Palmer, D., et al. (eds.),Geological Conservation Review Series, No.19, Joint Nature Conservation Committee. Devonian Period Anderson, J. (2008). Reconstructing the Aftermath of the Late Devonian Alamo Meteor Impact in the Pahranagat Range, Southeastern Nevada. Masters Thesis - Idaho State University. Brame, R.I. (2001). Revision of the Upper Devonian in the Central-South Appalachian Basin: Biostratigraphy and Lithostratigraphy. Ph.D. Dissertation - Virginia Polytechnic Institute and State University. Brett, C.E. and G.C. Baird (1996). Middle Devonian sedimentary cycles and sequences in the northern Appalachian Basin. Geological Society of America, Special Paper 306. (Thanks to xonenine for finding this one). Elliott, D.K., et al. (2000). Middle and Late Devonian vertebrates of the western Old Red Sandstone Continent. Cour.Forsch.-Inst. Senckenberg, 223. George, D. and A. Blieck (2011). Rise of the Earliest Tetrapods: An Early Devonian Origin from Marine Environment. PLoS ONE, 6(7). (Read on-line or download a copy.) Marynowski, L., M. Rakocinski and M. Zaton (2007). Middle Famennian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): Organic geochemistry and pyrite framboid diameter study. Geochemical Journal, Vol.41. Sandberg, C.A., J.R. Morrow and W. Ziegler (2002). Late Devonian sea-level changes, catastrophic events and mass extinctions. Geological Society of America, Special Paper 356. Stigall, A.L. (2010). Invasive Species and Biodiversity Crises: Testing the Link in the Late Devonian. PLoS ONE, 5(12). (Read on-line or download a copy.) Ziegler, W. and G. Klapper (1985). Stages of the Devonian System. Episodes, Vol., Number 2. Carboniferous Period Heckel, P.H. and G. Clayton (2006). The Carboniferous System. Use of the New Official Names for the Subsystems, Series and Stages. Geologica acta, Vol.4, Number 003. Permian Period Basu, A.R., et al. (2003). Chondritic Meteorite Fragments Associated with the Permian-Triassic Boundary in Antarctica. Science, Vol.302. Benton, M.J. and R.J. Twitchett (2003). How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology and Evolution, Vol.18, Number 7. Bottjer, D.J., et al. (2008). Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today, Vol.18, Number 9. Gastaldo, R.A., et al. (2009). The terrestrial Permian-Triassic boundary event bed is a nonevent. Geology, Vol.37, Number 3. Kiehl, J.T. and C.A. Shields (2005). Climate simulation of the latest Permian: Implications for mass extinction. Geology, Vol.33, Number 9. Knoll, A.H., et al. (2007). Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256. Lucas, S.G. (2004). A global hiatus in the Middle Permian tetrapod fossil record. Stratigraphy, Vol.1, Number 1. Marusek, J.A. (2004). The Great Permian Extinction Debate. Lunar and Planetary Science, XXXV. Retallack, G.J., et al. (2006). Middle-Late Permian mass extinctions on land. GSA Bulletin, Vol.118, Numbers 11-12. Shen, S.Z., et al. (2006). End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld, 15. Stephenson, M.H., L. Angiolini and M.J. Leng. The Early Permian fossil record of Gondwana and its relationship to deglaciation: a review. Virgili, C. (2008). The Permian-Triassic transition: Historical review of the most important ecological crises with special emphasis on the Iberian Peninsula and Western-Central Europe. Journal of Iberian Geology, 34(1). Mesozoic Era Triassic Period Cisneros, J.C., et al. (2010). Spondarthritis in the Triassic. PLoS ONE, 5(10). (Read on-line or download a copy.) Fraser, N.C. (1992). Late Triassic Faunal Successions of Central Pangaea. Virginia Journal of Science, Vol.43, Number 1B. Lucas, S.G., et al. (2007). Global Triassic Tetrapod Biostratigraphy and Biochronology: 2007 Status. In: The Global Triassic. Lucas, S.G. and J.A. Spielmann (eds.), New Mexico Museum of Natural History and Science Bulletin 41. Michalik, J., et al. (2010). Climate change at the Triassic/Jurassic boundary in the northwestern Tethyan realm, inferred from sections in the Tatra Mountains (Slovakia). Acta Geologica Polonica, Vol.60, Number 4. Ochev, V.G. and M.A. Shishkin (1989). On the Principles of Global Correlation of the Continental Triassic on the Tetrapods. Acta Palaeontologica Polonica, Vol.34, Number 2. Olsen, P.E., et al. (2002). Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary. Science, Vol.296. Olsen, P.E., et al. (2002). Continental Triassic-Jurassic boundary in central Pangaea: Recent progress and discussion of an Ir anomaly. Geological Society of America, Special Paper 356. Spray, J.G., S.P. Kelley and D.B. Rowley (1998). Evidence for a late Triassic multiple impact event on Earth. Nature, Vol.392. Tanner, L.H., S.G. Lucas and M.G. Chapman (2004). Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65. Tucker, M.E. and M.J. Benton (1982). Triassic Environments, Climates and Reptile Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 40. Jurassic Period Munnecke, A., H. Westphal and M. Kolbl-Ebert (2008). Diagenesis of plattenkalk: examples from the Solnhofen area (Upper Jurassic, southern Germany). Sedimentology, 55. Palfy, J., et al. (2007). Triassic-Jurassic boundary events inferred from integrated stratigraphy of the Csovar section, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244. Svensen, H., et al. (2007). Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters, 256. Turner, C.E. and F. Peterson (2004). Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem - a synthesis. Sedimentary Geology, 167. van de Schootbrugge, B., et al. (2005). Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology, 31(1). Cretaceous Period Alegret, L., et al. (2002). The Cretaceous/Tertiary boundary: sedimentology and micropalaeontology at El Mulato section, NE Mexico. Terra Nova, Vol.14, Number 5. Alvarez, W., et al. (1992). Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540. Geology, Vol.20. Arenillas, I., et al. (2006). Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth and Planetary Science Letters, XX. Baraboshkin, E.Y., A.S. Alekseev and L.F. Kopaevich (2003). Cretaceous palaeogeography of the North-Eastern Peri-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 196. Bennington, J.B. and S. Hesselbarth. Sediment analysis of a Stratigraphic Sequence across the K/T Boundary, Manasquan River Basin, NJ. 17th Annual Long Island Geologists Conference, Stony Brook, New York. Bice, K.L., B.T. Huber and R.D. Norris (2003). Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian 18O record at Deep Sea Drilling Project Site 511. Paleoceanography, Vol.18, Number 2. Bice, K.L., et al. (2006). A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, Vol.21. Bottke, W.F., D. Vokrouhlicky and D. Nesvorny (2007). An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature, Vol.449. Bralower, T.J., I.P. Silva and M.J. Malone (2002). New evidence for abrupt climate change in the Cretaceous and Paleogene. GSA Today. Bralower, T.J., C.K. Paull and R.M. Leckie (1998). The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology, Vol.26, Number 4. Bryan, S.E., et al. (1997). Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: Implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters, 153. Campbell, C.E., F.E. Oboh-Ikuenobe and T.L. Eifert (2008). Megatsunami deposit in the Cretaceous-Paleogene boundary interval of southeastern Missouri. The Geological Society of America, Special Paper 437. Christensen, W.K., et al. (2000). The base of the Maastrichtian. Bulletin of the Geological Society of Denmark, Vol.47. Claeys, P., W. Kiessling and W. Alvarez (2002 Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. Geological Society of America, Special Paper 356. Goto, K., et al. (2004). Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteoritics & Planetary Science, 39, Number 7. Kauffman, E.G. (1984). Paleobiogeography and Evolutionary Response Dynamic in the Cretaceous Western Interior Seaway of North America. In: Jurassic-Cretaceous Biochronology and Paleogeography of North America. Westermann, G.E.G. (ed.), Geological Association of Canada, Special Paper 27. Keller, G. (2001). The end-Cretaceous mass extinction in the marine realm: year 2000 assessment. Planetary and Space Science, 49. Keller, G., et al. (2007). Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth and Planetary Science Letters, 255. Keller, G., et al. (2004). More evidence that the Chicxulub impact predates the K/T mass extinction. Meteorics & Planetary Science, 39, Number 7. Keller, G., et al. (2003). Multiple impacts across the Cretaceous-Tertiary boundary. Earth-Science Reviews, 62. Lindgren, J., et al. (2011). Microspectroscopic Evidence of Cretaceous Bone Proteins. PLoS ONE, 6(4). (Read on-line or download a copy.) MacLeod, N. (in press). Cretaceous. In: Encyclopedia of Geology. Selley, R.C., L.R.M. cocks and I.R. Plimer (eds.), Academic Press, London. MacLeod, N., et al. (1997). The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, Vol.154. Matsui, T., et al. (2002). Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. Geological Society of America, Special Paper 356. McCarthy, D. (2005). Biogeographical and geological evidence for a smaller, completely-enclosed Pacific Basin in the Late Cretaceous. Journal of Biogeography, 32. Meyers, P.A. and B.R.T. Simoneit (1989). Global comparisons of organic matter in sediments across the Cretaceous/Tertiary boundary. Organic Geochemistry, Vol.16, Numbers 4-6. Myers, C.E. and B.S. Lieberman (2010). Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proc.R.Soc.B. Nicholls, E.L. and A.P. Russell (1990). Paleobiogeography of the Cretaceous Western Interior Seaway of North America: the vertebrate evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 79. Noonan, B.P. and P.T. Chippindale (2006). Vicariant Origin of Malgasy Reptiles Supports Late Cretaceous Antarctic Land Bridge. The American Naturalist, Vol.168, Number 6. Nordt, L., S. Atchley and S. Dworkin (2003). Terrestrial Evidence for Two Greenhouse Events in the Late Cretaceous. GSA Today. Ocampo, A., V.Vadja and E. Buffetaut. Unravelling the Cretaceous-Paleogene (KT) Turnover, Evidence from Flora, Fauna and Geology. Pascual, R. and E.O. Jaureguizar (1992). Evolutionary pattern of land mammal faunas during the Late Cretaceous and Paleocene in South America: a comparison with the North American pattern. Ann.Zool. Fennici, 28. Racki, G., et al. (2011). The weathering-modified iridium record of a new Cretaceous-Palaeogene site at Lechowka near Chelm, SE Poland, and its palaeogeobiologic implications. Acta Palaeontologica Polonica, 56(1). Savrda, C.E. (1993). Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous-Tertiary boundary sands in Alabama. Geology, Vol.21. Schulte, P., et al. (2010). The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, Vol.327. Schulte, P., et al. (2006). The Cretaceous-Paleogene (K-P) boundary at Brazos, Texas: Sequence, stratigraphy, depositional events and the Chicxulub impact. Sedimentary Geology, 184. Tada, R., et al. A Giant Tsunami Deposit at the Cretaceous-Tertiary Boundary in Cuba. Catastrophic Events Conference. Tsakas, S.C. and J.R. David (1987). Population ge).netics and the Cretaceous extinction. Genet.Sel.Evol., 19(4). Weber, R.D. and D.K. Watkins (2007). Evidence from the Crow Creek Member (Pierre Shale) for an impact-induced resuspension event in the late Cretaceous Western Interior Seaway. Geology, Vol.35, Number 12. Wolbach, W.S., S. Widicus and S. Moecker. Is the Soot Layer at the K/T Boundary Really Global? Lunar and Planetary Science, XXIX. Yancey, T.E. (1996). Stratigraphy and Depositional Environments of the Cretaceous-Tertiary Boundary Complex and Basal Paleocene Section, Brazos River, Texas. Transactions of the Gulf Coast Association of Geological Societies, Vol.XLVI. Cenozoic Era Paleogene Period Paleocene Epoch Alegret, L., M.A. Kaminski and E. Molina (2004). Paleoenvironmental Recovery After the Cretaceous/Paleogene Boundary Crisis: Evidence from the Marine Bidart Section (SW France). Palaios, Vol.19. Alroy, J. (1999). The Fossil Record of North American Mammals: Evidence for a Paleocene Evolutionary Radiation. Syst.Biol., 48(1). Clemens, W.A. (2010). Were Immigrants a Significant Part of the Earliest Paleocene Mammalian Fauna of the North American Western Interior? Vertebrata PalAsiatica, 48(4). Gingerich, P.D. (2010). Mammalian Faunal Succession Through the Paleocene-Eocene Thermal Maximum (PETM) in Western North America. Vertebrata PalAsiatica, 48(4). Higgins, J.A. and D.P. Schrag (2006). Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 245. ######, J.J. and M.E. Collinson (2012). Mammalian Faunal Turnover Across the Paleocene-Eocene Boundary in NW Europe: The Roles of Displacement, Community Evolution and Environment. Austrian Journal of Earth Sciences, Vol.105/1. ######, J.J. and D. Dashzeveg (2003). Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene-Eocene boundary. Geological Society of America, Special Paper 369. Katz, M.E., et al. (1999). The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, Vol.286. McInerney, F.A. and S.L. Wing (2011). The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate and Biosphere with Implications for the Future. Annu.Rev. Earth Planet.Sci., 39. Scheibner, C. and R.P. Speijer (2008). Decline of coral reefs during late Paleocene to early Eocene global warming. eEarth, 3. Zachos, J.C., et al. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, Vol.308. Eocene Epoch Coccioni, R., et al. (2000). Marine biotic signals across a late Eocene impact layer at Massignano, Italy: evidence for long-term environmental perturbations? Terra Nova, Vol.12, Number 6. Pusz, A.E., et al. (2009). Stable isotopic response to late Eocene extraterrestrial impacts. Geological Society of America, Special Paper 452. Salamy, K.A. and J.C. Zachos (1999). Latest Eocene - Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeography, Palaeoclimatology, Palaeoecology, 145. Schubert, B.A., et al. (2012). A summertime rainy season in the Arctic forests of the Eocene. Geology, in Press. Woodburne, M.O., G.F. Gunnell and R.K. Stucky (2009). Land Mammal Faunas of North America Rise and Fall During the Early Eocene Climatic Optimum. Denver Museum of Nature & Science Annals, Number 1. Oligocene Epoch Alegret, L., et al. (2008). Effects of Oligocene climatic events on the foraminiferal record from Fuente Caldera section (Spain, western Tethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 269. De Man, E. and S. Van Simaeys (2004). Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences, 83(3). Kappelman, J., et al. (2003). Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature, Vol.426. Neogene Period Miocene Epoch Bohme, M. (2003). The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195. Harzhauser, M. and W.E. Piller (2004). Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy, Vol.1, Number 1. Hoffmeister, A.P. and M. Kowalewski (2001). Spatial and Environmental Variation in the Fossil Record of Drilling Predation: A Case Study from the Miocene of Central Europe. Palaios, Vol.16. Janis, C.M., J. Damuth and J.M. Theodor (2004). The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 207. Latorre, C., J. Quade and W.C. McIntosh (1997). The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas. Earth and Planetary Science Letters, 146. Lewis, A.R., et al. (2007). Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains. GSA Bulletin, Vol.119, Numbers 11-12. Liu, L., J.T. Eronen and M. Fortelius (2009). Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 279. Pliocene Epoch Baskin, J.A. and R.G. Thomas (2007). South Texas and the Great American Interchange. Gulf Coast Association of Geological Societies Transactions, Vol.57. Draut, A.E., et al. (2003). Climate stability during the Pliocene warm period. Paleoceanography, Vol.18, Number 4. Federov, A.V., C.M. Brierly and K. Emanuel (2010). Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature, Vol.463. Haywood, A.M. and P.J. Valdes (2004). Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218. Haywood, A.M., et al. (2001). Modelling Middle Pliocene Warm Climates of the USA. Palaeontologia Electronica, Vol.4, Issue 1. Ravelo, A.C., P.S. Dekens and M. McCarthy (2006). Evidence for El Nino-like conditions during the Pliocene. GSA Today, Vol.16, Number 3. Repenning, C.A. (1990). Of Mice and Ice in the Late Pliocene of North America. Arctic, Vol.43, Number 4. Robinson, M.M. (2009). New quantitative evidence for extreme warmth in the Pliocene Arctic. Stratigraphy, Vol.6, Number 4. Tziperman, E. and B. Farrell (XXXX). The Pliocene equatorial temperature - lessons from atmospheric superrotation. Paleoceanography, Vol.???. Van Couvering, J.A., et al. (2000). The base of the Zanclean Stage and of the Pliocene Series. Episodes, Vol.23, Number 3. Webb, S.D. (2006). The Great American Biotic Interchange: Patterns and Processes. Ann. Missouri Bot.Gard., 93. Weigelt, E., L. Dupont and G. Uenzelmann-Neben (2008). Late Pliocene climate changes documented in seismic and palynology data at the southwest African Margin. Global and Planetary Change, 63. Quaternary Period Pleistocene Epoch Balco, G. and C.W. Rovey (2010). Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology, Vol.38, Number 9. Barnosky, A.D. and E.L. Lindsey (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International, 217. Barnosky, A.D., et al. (2004). Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations. PNAS, Vol.101, Number 25. Clark, P.U., et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25. Diniz-Filho, J.A.F. (2004). Macroecological Analyses Support an Overkill Scenario for Late Pleistocene Extinctions. Braz.J.Biol., 64(3A). Dupont, L.M., et al. (2001). Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology, Vol.29, Number 3. ######, A.S. (2004). An outline of North American deglaciation with emphasis on central and northern Canada. (Thanks to oxytropidoceras for finding this one!) Gerhart, L.M. Discoveries at Rancho La Brea and the Debate over Late Pleistocene Extinction. Gibbons, R. (2004). Examining the Extinction of the Pleistocene Megafauna. Surj., Anthropological Sciences. Gingerich, P.D. (1984). Pleistocene Extinctions in the Context of Origination-Extinction Equilibria in Cenozoic Mammals. In: Quaternary Extinctions: A Prehistoric Revolution. Martin, P.S. and R.G. Klein (eds.), University of Arizona Press. Glasser, N.F., et al. (2006). Evidence from the Rio Bayo valley on the extent of the North Patagonian Icefield during the Late Pleistocene-Holocene transition. Quaternary Research, Vol.65. Grayson, D.K. (2007). Deciphering North American Pleistocene Extinctions. Journal of Anthropological Research. Hofreiter, M. and J. Stewart (2009). Ecological Change, Range Fluctuations and Population Dynamics during the Pleistocene. Review - Current Biology, 19. Johnson, C.N. and G.J. Prideaux (2004). Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral. Ecology, 29. Johnson, E. (1986). Late Pleistocene and Early Holocene Vertebrates and Paleoenvironments on the Southern High Plains, U.S.A. Geographie physique et Quaternaire, Vol.40, Number 3. LaViolette, P.A. (2009). The Cause of the Megafaunal Extinction: Supernova or Galactic Core Outburst? The Starburst Foundation. Lawing, A.M. and P.D. Polly (2011). Pleistocene Climate, Phylogeny and Climate Envelope Models: An Integrative Approach to Better Understanding Species' Response to Climate Change. PLoS ONE, 6(12). (Read on-line or download a copy.) Lessa, E.P. and R.A. Farina (1996). Reassessment of Extinction Patterns Among the Late Pleistocene Mammals of South America. Palaeontology, Vol.39, Part 3. Loehle, C. (2007). Predicting Pleistocene climate from vegetation in North America. Climate of the Past, 3. Louys, J., D. Curnoe and H. Tong (2007). Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 243. Lyons, S.K., F.A. Smith and J.H. Brown (2004). Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research, 6. Ripple, W.J. and Van Valkenberg, B. (2010). Linking Top-down Forces to the Pleistocene Megafaunal Extinctions. Bioscience, Vol.60, Number 7. Ruban, D.A. (2009). The survival of megafauna after the end-Pleistocene impact: a lesson from the Cretaceous/Tertiary boundary. Geologos, 15(2). St-Onge, D.A. (1987). The Sangamonian Stage and the Laurentide Ice Sheet. Geographie physique et Quaternaire, Vol.41, Number 2. Surovell, T.A., et al. (2009). An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. PNAS, Vol.106, Number 43. Vizcaino, S.F., R.A. Farina and J.C. Fernicola (2009). Young Darwin and the Ecology and Extinction of Pleistocene South American Fossil Mammals. Revista de la Asociacion Geologica Argentina, 64(1). Waguespack, N.M. (2007). Why We're Still Arguing About the Pleistocene Occupation of the Americas. Evolutionary Anthropology, 16. Whitney-Smith, E. (2001). Second-Order Predation and Pleistocene Extinctions: A System Dynamics Model. Ph.D. Dissertation - George Washington University. Whitney-Smith, E. The Evolution of an Ecosystem: Pleistocene Extinctions. Wroe, S. and J. Field (2006). A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation. Quaternary Science Reviews, 25. Other General Paleontology Papers Babcock, L.E. (2005). Asymmetry in the fossil record. European Review, Vol.13, Supp. Number 2. Bassett, M.G., L.E. Popov and L.E. Holmer (2004). The Oldest-Known Metazoan Parasite? J.Paleont., 78(6). Bengston, S. (2002). Origin and Early Evolution of Predation. Paleontological Society Papers, Vol.8. Benton, M.J. (2005). Vertebrate Paleontology. Third Edition. Blackwell Publishing. (Entire book!) (Thanks to doushantuo for locating this one!) Benton, M.J. and P.C.J. Donoghue (2007). Paleontological Evidence to Date the Tree of Life. Mol.Biol.Evol., 24(1). Bisulca, C., et al. (2012). Variation in the Deterioration of Fossil Resins and Implication for the Conservation of Fossils in Amber. American Museum Novitates, Number 3734. Bryant, H.N. and A.P. Russell (1992). The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Phil.Trans.R.Soc.Lond.B, 337. Cartwright, P. and A. Collins (2007). Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integrative and Comparative Biology, Vol.47, Number 5. Dietl, G.P. and P.H. Kelley (2002). The Fossil Record of Predator-Prey Arms Races: Coevolution and Escalation Hypotheses. Paleontological Society Papers, Vol.8. Donoghue, P.C.J. and M.A. Purnell (2009). The Evolutionary Emergence of Vertebrates From Among Their Spineless Relatives. Evo.Edu. Outreach. Dzik, J. (2002). Chapter 11.3 Early diversification of organisms in the fossil record. In: Fundamentals of Life. Editions scientifiques et medicales, Elsevier SAS. Dzik, J. (1999). Chapter 13. Evolutionary Origin of Asymmetry in Early Metazoan Animals. In: Advances in BioChirality. Palyi, G., C. Zucchi and L. Caglioti (eds.), Elsevier Science S.A. Emlen, D.J. (2008). The Evolution of Animal Weapons. Annu.Rev.Ecol.Evol.Syst., 39. Fedonkin, M.A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, Vol.7, Number 1. Gans, C. (1989). Stages in the Origin of Vertebrates: Analysis by Means of Scenarios. Biol.Rev., 64. Ghaffar, A., M.A. Khan and M. Akhtar (2009). Predator-Prey Relationship (Cervidae & Carnivora) and its Impact on Fossil Preservation from the Siwaliks of Pakistan. The Journal of Animal & Plant Sciences, 19(1). Harris, J.D. (2004). Confusing Dinosaurs With Mammals: Tetrapod Phylogenetics and Anatomical Terminology in the World of Homology. The Anatomical Record Part A, 218A. Heim, N.A. (2008). The Spatial Structure of Biodiversity in the Fossil Record: Contrasting Global, Continental, and Regional Responses to Climate Change. Ph.D. Dissertation - The University of Georgia. Holland, N.D. and J. Chen (2001). Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and paleontology. Bioessays 23.2. Hunt, G. (2010). Evolution in Fossil Lineages: Paleontology and The Origin of Species. The American Naturalist, Vol. 176 Supplement. Jablonski, D. (2005). Evolutionary Innovations in the Fossil Record: The Intersection of Ecology, Development and Macroevolution. Journal of Experimental Zoology (Mol.Dev.Evol.), 304B. Kowalewski, M. (2002). The Fossil Record of Predation: An Overview of Analytical Methods. Paleontological Society Papers, Vol.8. Labandeira, C.C. (2007). The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods. Insect Science, 14. Labandeira, C.C. (2002). Paleobiology of Predators, Parasitoids, and Parasites: Death and Accomodation in the Fossil Record of Continental Invertebrates. Paleontological Society Papers, Vol.8. Lawver, L.A., et al. Intercontinental Dispersal Routes for South American Land Mammals: Paleogeographic Restraints. Long, J.A. and M.S. Gordon (2004). The Greatest Step in Vertebrate History: A Paleobiological Review of the Fish-Tetrapod Transition. Physiological and Biochemical Zoology, 77(5). McMillan, M.E., C.L. Angevine and P.L. Heller (2002). Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: Evidence of late Cenozoic uplift of the Rocky Mountains. Geology, Vol.30, Number 1. Morris, S.C. (1993). The fossil record and the early evolution of the Metazoa. Nature, Vol.361. Motani, R. (2009). The Evolution of Marine Reptiles. Evo.Edu. Outreach, 2. Nudds, J. and P. Selden (2008). Fossils explained 56. Fossil-Lagerstatten. Geology Today, Vol.24, Number 4. Peters, S.E. and N.A. Heim (2010). The geological completeness of paleontological sampling in North America. Paleobiology, 36(1). Pojeta, J. and D.A. Springer (2001). Evolution and the Fossil Record. American Geological Institute/The Paleontological Society. Racki, G. (2012). The Alvarez impact theory of mass extinction: limits to its applicability and the "great expectations syndrome". Acta Palaeontologica Polonica, 57(4). Raia, P. and S. Meiri (2006). The Island Rule in Large Mammals: Paleontology Meets Ecology. Evolution, 60(8). Schultze, H.-P. (1995). The Origin of Tetrapods - Past and Present Hypotheses. Vertebrata PalAsiatica, 33(4). Shu, D. (2003). A paleontological perspective of vertebrate origin. Chinese Science Bulletin, Vol.48, Number 8. Sole, R.V. and M. Newman. Patterns of extinction and diversity in the fossil record. Staples, L.W. (1965). Zeolite Filling and Replacement in Fossils. The American Mineralogist, Vol.50. Steele, T.E. (2003). Using Mortality Profiles to Infer Behavior in the Fossil Record. Journal of Mammalogy, 84(2). Taylor, P.D. and M.A. Wilson (2003). Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62. Trammer, J. (2011). Differences in global biomass and energy use between dinosaurs and mammals. Acta Geologica Polonica, Vol.61, Number 2. Vermeij, G.J. (2016). Gigantism and Its Implications for the History of Life. PLoS ONE, 11(1). Weishampel, D.B. and D.B. Norman (1989). Vertebrate herbivory in the Mesozoic; Jaws, plants, and evolutionary metrics. Geological Society of America, Special Paper 238. Wood, R. (1998). The Ecological Evolution of Reefs. Annu.Rev.Ecol.Syst., 29. Young, G.C. (2008). Early Evolution of the Vertebrate Eye - Fossil Evidence. Evo.Edu. Outreach, 1.
  17. The entire, abundantly fossiliferous formation consists of 19 meters of limestone, all of which contains fossils, but interspersed in which are the lagerstätten layers that contain the highly preserved specimens. Within these layers, the fish and other specimens are so highly preserved that soft tissue preservation can is observable and even the skin color pattern can sometimes be determined. Lit.: Blot, J. (1976) Les anguilliformes fossiles du Monte Bolca. 2e Congres Europeen des Ichtyologistes Europeens, Paris, 1976, Revue Trav. Inst. Pech. Marit., Nantes, 40 (3&4) 509-511, 1 tabl. Blot, J. (1978) Les apodes fossiles du Monte Bolca. Studi e Ricerche sui Giacimenti Terziari di Bolca, Verona 3 (1) 1-260, 120 fig, 21 tabl. 39pl. Blot, J. (1984): Les Apodes fossiles du Monte Bolca. 2. Actinopterygii : Ordre des Apodes (Anguilliformes): Famille des Paranguillidae Blot 1980. Museo civico di storia naturale di Verona, 1984, p. 62-238, 24 p. di tav.
  18. Going back several decades I have attempted to have an annual extended field trip; call it a fossil collecting vacation. Some years this happens, some it doesn't but this past November I had the opportunity to spend several days in the field visiting some of the classic Cretaceous and Paleogene river sites which abound in Alabama. Since I haven't had the opportunity to post much in my blog, I decided to post pictures from that trip here as I have time. First up are pictures from the lowermost Maastrichtian (~70 mya) Upper Cretaceous Bluffport Marl Member of the Demopolis Formation. The Demopolis Formation for the most part is a Campanian aged chalk however the Bluffport Marl Member which defines the upper portion of the Demopolis is a molluscan rich sandy lime lying within the Exogyra cancellata zone. Aragonitic shells have not been preserved however calcitic oysters are abundant including Exogyra cancellata, Pyncodonte convexa, and Paranomia scabra. Rarer elements include Exogyra costata and iron/hematite(?) pseudomorphs of Trigonia sp. Temperatures were near perfect in the lower 60s and when not collecting it was a joy to watch the ever present barges on their way to Mobile.
  19. From the album Green River Formation. Parachute Creek Member

    Unidentified insect from the Green River Formation. Parachute Creek Member. Douglas Pass, Colorado. Radar Dome location. 5/8" across.
  20. hi I found this tooth on the shores of the Potomac river near popes creek, Maryland. i think its a transitional otodus but am not quite sure. thanks, branden
  21. hi i found this tooth on the shores of the Potomac river near indian head Maryland recently and was curious if its a otodus or a transitional otodus. thanks, branden
  22. Hello! Looking through all my fossils, I found this thing at some point. It was in a small bottle with Ray teeth from Balegem (BE), a fossil location containing fossils (sharkteeth, ray teeth, fish teeth, and other marine material) from the Eocene (25-35mya). I'm pretty sure that this thing is not a ray tooth though. Any clue what it could be? Photo 1: front Photo 2: back Photo 3: closeup front Thanks in advance for the help! Best regards, Max
  23. . The Belgium Nummulites sp.that I have are 5 - 10 mm.
  24. The French N. laevigatus specimens that I have are 2-17mm in diameter. .
  25. Hi, I was wondering if anyone had any thoughts on the ID of these fossil structures. They're found in a fossil patch reef of Bartonian age in Northern Spain, at the moment I am exploring the possibility that they could be very large oysters of some kind, they could possibly be stromatoporoid fossils though (however they don't have any obvious internal layering or structures). Other fossils nearby include small oysters and solitary and colonial scleractinian corals, along with large nummulitid foraminiferans. The layered fossils were very hard, and I was not able to take any samples, interestingly they did spark in contact with a hammer, could this be due to silicification? One of the nummulites also had a shiny metallic luster. Hope some of that helps, thanks in advance for any help.