Jump to content

Blogs

Featured Entries

  • andreas

    The Columbianus Zone/alaunium 2/ Norium/upper Triassic, In The So Called “Hallstatt Limestone” Of The Northern Calcareous Alps In Austria

    By andreas

    The columbianus Zone/Alaunium 2/ Norium/Upper Triassic in the so called "Hallstatt Limestone" of the Northern Calcareous Alps in Austria Dear Fossil Forum members! This pictured report about the ammonite bearing Triassic Hallstatt limestone will be the first one of a continuous series of reports. Since the beginning of the geological research in the Northern Calcareous Alps of Austria in the 19th century, about 500 species of Triassic ammonites have been described from the Hallstatt limestone by Mojsisovics, Hauer, Diener and other authors. The most important person in the development of the first Alpine Triassic ammonoid biostratigraphy was the Austrian palaeontologist Edmund von Mojsisovics. When viewing his classical monographs one is overwhelmed by the stunning Lithographics created by the artists of the late 19th century. Every recent serious triassic ammonoid researcher includes these old works in the standard literature of triassic ammonoids. Unfortunely his ammonoid bio-chronostratigraphic scale had some mistakes (changed zones) especially the incorrect stratigraphic position of some ammonoid zones in the Norian stage. It was the merit of E.T. Tozer to discover this weakness and to correct it. Hallstatt limestone facies is a type of triassic Ammonitico Rosso facies which also occurs in several other locations all over the world. The Hallstatt Limestone Facies of Austria consists typically of red to grey –coloured, in some parts abundantly fossiliferous limestones locally interbedded with marls. Also strongly condensed successions are common. Fossils mostly do not occur in continuous layers but in so called lenses and fissure fillings. The most common fossils are Ammonoids and Nautiloids, but Crinoids ossicles, Bivalves, Conodonts and Gastropods also occur. In this report I will introduce you to the Triassic ammonoid zone of the Alaunium 2 /Norium/ Upper Triassic of the Hallstatt formation. The stratigraphic level lower Alaunium 1 will be shown in a future report. Fig.1 A very beautiful view of a tectonic border. The Valley in front marks the tectonic border between the mainly Triassic Hallstatt unit und the Tirolikum unit of the Totengebirgs nappe. The highest mountain shown on the picture is the "Loser". The well bedded limestone in the summit area are of Jurassic age. This is in turn resting on Triassic "Dachstein" limestone that ends roughly in the middle of the picture. The name of this stage was chosen by Mojsisovics after the Celtic folk of the Alauns. In historical times this tribe lived in the forelands of the calcareous Alps in the area of the later Roman province Noricum. Zone ammonite of the Alaunium 2, outside of the Tethys realm, is Mesohimavatites columbianus Mc LEARN, well known from the boreal Triassic of British Columbia in Canada. In the Tethys realm the whole Alaunium is split into three subdivisions. Alaunium 1 = Bicrenatus -Zone, Alaunium 2 = (instead Columbianus) Hogarti- Zone, Alaunium 3 = (instead Columbianus) Macer -Zone The subzones I-IV shown in the timescale below were established after bed by bed collections in the well-bedded erratic limestone blocks of Timor by the Austrian geologist Franz Tatzreiter. Fig.2 In the Hallstatt limestone of the northern calcareous Alps, Himavatites sp. occurs very scarcely. It is impossible to use this genus for Stratigraphic aims on new detected locations. A normal collector could use the following rough scheme to insert ammonoids in the right stratigraphic subzone. But notice that strong condensation, fissure filling etc. can blur this schema. For a newbie collector it is much more difficult to find some fossils there at all. To place them into the right ammonoid zone is the easier part of the exercise. Rough scheme, to place ammonoids into the right subzones of the Alaunium 2 in the Hallstatt limestone. Subzone I+II: Distichites (especiallys in II) but no Halorites, Subzone III: Halorites starts, Distichites can be found too, but ends in this subzone, Subzone IV: Halorites frequent, main zone of „catenate Halorites" especially in the later time of this subzone. In the upper sphere of subzone 3 and in the lower sphere of subzone 4 Halorites sp. is a very common faunal element. In locations which expose this time interval Halorites is more common than other leiostraca (=ammonoids without sculpture) ammonoids like Arcestes sp. The often used term Halorites horizon (KRYSTYN, L., 1973) points that out exactly. Representative for the family of the Haloritidae, is shown Halorites ramsaueri (QUENST.),.Sommeraukogel, MOJSISOVICS (Bd. II), Wien 1893, Tafel 71, 76 und 77. Fig.3 The venter views laterally right show the variability of the end living chamber (after pictures by MOJSISOVICS Bd. II, Wien 1893) of Halorites ramsaueri QUENST. The right venter view could also be termed as a Halorites macer. The difference between H. macer and H. ramsaueri is not clear due to the great variability of these two species and is totally questionable in my opinion. Fig.4 Catenohalorites catenatus BUCH form MOJSISOVICS (Bd. II), Wien 1893 To the genus „Catenohalorites" count all species of Halorites, which show the chain like („catenat") arranged nodes of the inner whorls on the phragmocon too. (The inner whorls are more or less catenat by all Halorites sp.) Historical locations Beside the well known historical location of the Sommeraukogel, which exposed all four subzones, there are several other historical locations. For example: Hallein, Hoher Student, Leisling, Pötschenhöhe, Rossmoos and Röthelstein. Years ago I was lucky to find a talus block in an area of such an historical location. Later in this report I will show the ammonoids of this block. Two new faunas shown here in this report came from locations hitherto not yet described. Fauna 1 The first new location is in an area where the normal succession of limestone is penetrated by fractures with fissure filling and reworked horizons. One reworked horizon (not for sure yet, it could also be an untypical fissure filling) shows a Halorites fauna. Two nearby located, clear fissure fillings show a faunal association with Distichites but without Halorites. A shell fragment of a Himavatites sp. in the Distichites fissure may confirm the higher hogarti zone. One highlight of the Halorites location was the discovering of a Bambanagites MOJS. 1896. This is the first evidence of this genus in the Hallstatt realm. So far Bambanagites is yet only known from the Halorites limestone of the Bambanag- succession on Niti- Pass (Himalaya) in India, described by MOJSISOVICS with two species (B. schlagintweiti MOJS. and B. dieneri MOJS) In Dieners work, „Fauna of the Tropites-Limestone of Byans", another species, B. kraffti DIENER, is described. The Venter of B. kraffti is very sharp with only weak waves on the flank. Further research on Bambanagites (member of the family Pinacoceratidae) resulted in no other location/occurrence than the above mentioned location in India. Maybe Bambanagites occurs also in the Triassic of Timor. I haven't found any citation but judging by the frequent occurrence of fauna of alaunian ammonites there, it could be possible to find some. Fig 5 Bambanagites cf. dieneri MOJS. a first evidence in the Hallstatt limestone of the eastern Alps, possibly a worldwide first evidence outside the type locality in India. Fig.6 Bambanagites Dieneri, MOJSISOVICS 1896 .Cephalopoden der oberen Trias des Himalaya Taf. XVIII, Fig. 3 - 6. The impression of the Bambanagites sp. is on the backside of this slab with Halorites cf. macer MOJS.(8cm) on the following picture Fig.7 Halorites cf. macer MOJS. found in the location together with Bambanagites Fig.8 Halorites sp. with very prominent nodes on the venter Fig.9 Washed block from this location, with visible Halorites sp. Several other ammonoid species are also visible on this block which are frequent in the Alaunium 2. Rhacophyllites neojurensis QUENST. , Placites sp,, Halorites div. sp., Arcestes sp., Leislingites sp., Megaphyllites sp., Paracladiscites multilobatus BRONN., Steinmannites hoernesi HAUER, Alloclionites ares MOJS It is further worth a mention about the occurrence of the Ammonite genus. cf. Psamateiceras in this location. Natural picture size is 45cm. Other important ammonoid species of the macer zone A beautiful, conspicuous faunal element of the macer zone is Steinmannites sp. With different species this genus shows its maximum in this zone and was found relatively frequently in this location within the Halorites location. Fig.10 Steinmannites hoernesi (HAUER) from the Halorites-area in compairson with a Fig.11 cf. Eosteinmannites sp. from the Distichites-area of this location. Fig.12 ? cf. Pseudosirenites sp.(3cm) or cf. Mesohimavatites sp. from the Halorites-area Fig.13 Paracladiscites multilobatus BRONN. (5cm) Another frequent faunal element of the Alaunium 2 is Paracladiscites multilobatus BRONN. This species differs from Cladiscites and Hypocladiscites by the absence of the spiral striations. Only fine radial growth lines are visible on the shell. The genus Paracladiscites reaches throughout the whole columbianus- Zone up to the zone of Sagenites reticulatus/Cochloceras/Paracochloceras (Sevat2) Distichites Fig.14 Distichites megacanthus MOJS. from the Distichites area of this location. Fig.15 Venter view of Distichites megacanthus MOJS. Diameter is 19 cm; this is rather the growth limit of this species. Distichites sp. is easy to determine by the two bulges following the venter furrow Fig.16 Distichites cf. kmetyi (8cm) of this location Distichites were found in different species at this location but very scarcely. From 30-40 other ammonite's roughly one piece of Distichites sp. was found. Most common ammonites are Placites and Arcestes. Fig.17 Rhacophyllites neojurensis QUENST. (7cm) from the Distichites-area Rhacophyllites sp. runs up to the Sevat Fauna 2 The second new location comes from another area and is also a reworked horizon. This horizon is associated to a small tectonic fault which strikes through the surrounding normal-bedded limestone at a low angle. This zone of weakness may have already been active at the time of the limestone sedimentation and may have worked as a trap for fossils. The stratigraphic lower part (compared to the surrounding limestone beds) of this horizon bears big Halorites cf. ramsaueri embedded in micritic red limestone which was tectonically stressed. In the stratigraphic younger part of this horizon, compared to the normal-bedded surrounding limestone beds, sparitic fissure filling is given in which abundant small ammonoids and gastropods are embedded. According to the occurrence of scarce Sagenites sp. small catenate Halorites and small Hydrozoans, this sparitic part of the fissure filling dates into the subzone IV (after Tatzreiter). Fig.18 Cross-section of a Rhacophyllites neojurensis QUENST. In situ picture from the white sparitic filled stratigraphic upper part of the fissure. Natural size of the picture ca.30x25cm The left side of the picture shows how unspectacular the weathered rock looks, although the mossy vegetation has been removed before by hand. Fig.19 Gastropoda and Halorites-core (1cm), embedded in white calcite. Fig. 20 Slab with Steinmannites hoernesi HAUER, Paracladiscites multilobatus BRONN, Arcestes sp., Placites sp. und Leislingites sp., within white calcite embedded red limestone lithoclasts of the stratigraphic upper part of the fissure. Slab size is 16cm Fig.21 Visible Halorites sp. end body chamber from the stratigraphic lower part of this fissure. Fig.22 Block from the tectonically stressed area of this fissure. Well visible are the calcitically healed slip movements in this rock which show us a "frozen" moment during the lithification of this limestone. Now to the aforementioned talus block of an historical location. After the first blow of the hammer a Halorites was visible. By finding an Amarassites cf. semiplicatus HAUER I was able to date the fauna of this block into the Subzone III afterTatzreiter. Fig.23 Amarassites cf. semiplicatus HAUER (5cm) from the above mentioned talus block of an historical location. Fig.24 Halorites sp., freshly split talus block. Natural picture size ca.20cm At the end of my report some pictures of another Alaunian 3 Fauna. From this location I have less material. The faunal composition differs a little bit from the above mentioned locations. New to this location is cf. Parajuvavites mercedis MOJS. and cf. ?Acanthothetidites sp. Fig.25 Slab from this Alaunian fissure with cf. ? Acanthothetidites sp, („thorned"Ammonite on top, 3cm) Fig.26 Paracladiscites multilobatus BRONN, Arcestes sp., Parajuvavites cf. mercedis MOJS.(ribbed ammonite) Size of slab ca. 10cm Fig.27 Matrixrock of this location Natural size on picture ca. 35cm I hope you have enjoyed this report about my favourite collecting area. Unfortunly I cannot load up graphics. Maybe it is possible and I only do not know how to do this. Maybe somebody can help me in this case. A special thank is given to Fossil forum member "Ludwigia" for correcting my uncivil kind of English. Best regards Andreas Literature: DIENER, C.: Fauna of the Tropites-limestone of Byans. In: Himalayan Fossils, Palaeontologia Indica,(ser.15) 5/1, 1-201, Calcutta 1906 KRYSTYN, L. Zur Ammoniten und Conodonten-Stratigraphie der Hallstätter Obertrias(Salzkammergut, Österreich), Verh.Geol. B.-A., Wien 1973 KRYSTYN, L., SCHÄFFER, G. & SCHLAGER, W. (1971b): Der Stratotypus des Nor.- Annales Inst. Geol. Publ. Hungar., 54, 2, 607-629, 7 Abb., Budapest MOJSISOVICS, E. 1893: Die Cephalopoden der Hallstätter Kalke, Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, II Band, Wien 1893 MOJSISOVICS, E. 1896: Beiträge zur Kenntniss der obertriadischen Cephalopoden Faunen des Himalaya, Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch–naturwissenschaftliche Classe, 63, 575–701. Wien 1896, TATZREITER, F. 1981, Ammonitenfauna und Stratigraphie im höheren Nor(Alaun, Trias) der Tethys aufgrund neuer Untersuchungen in Timor, Denkschr. Österr. Akad. Wiss., math.-naturwiss. KI., 121, Wien 1981, Springer Verlag TATZREITER, F. 1985. Zur Kenntnis der obertriadischen (Nor; Alaun, Sevat) trachyostraken Ammonoideen Jb. Geol. B.-A. ISSN 0016-7800 Band 128 Heft 2 S.219-226 Wien, Oktober 1985, 8 Abbildungen TATZREITER,F. 1984: Bericht über paläontologische Untersuchungen in Hallstätterkalken auf Blatt 76 Wr. Neustadt und 96 Bad Ischl. - Jb. Geol. B.-A., 128/2, Wien 1985 TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin, 467,1–663.
    • 14 comments
    • 9,291 views
  • MikeR

    The End Of My Pliocene Project

    By MikeR

    When I began this blog late in 2010, my intention was to report on recent field trips however, with the exception of one excursion each into the Upper Miocene, Lower Pliocene and the Calabrian Pleistocene, all of my posts have concentrated on the Upper Pliocene of the US Atlantic and Gulf coastal plains. I already had an extensive collection of Florida Upper Pliocene invertebrates that I had collected while a resident of the state in the late 80s and early 90s. The fossils from these beds are contemporaneous with the Zone 2 Yorktown beds of Virginia and North Carolina that I began collecting in the early 2000s, the Duplin Formation that I collected in 2010 and several trips to Jackson Bluff localities in the Florida panhandle in 2011. These more recent collecting endeavors required a reassessment of the identification of my Florida collection due to a better recognition on my part of modern thoughts on speciation and from working with paleontologists who research these deposits. Also I began rejecting non-peer reviewed books and guides geared toward amateurs which exhibited sloppy and unsubstantiated research. In an effort to free display space I began cross-referencing species from different formations to compile at least what I believe is very accurate species identifications and to place the best example of each species regardless of formation within my display cabinets (fig. 1 & 2). Figure 1. Upper Pliocene (Piacenzian) Bivalvia Eastern United States. Figure 2. Upper Pliocene (Piacenzian) Gastropoda Eastern United States. The attached species list represents the completion of my Pliocene project. Unlike my previous lists which concentrated on the mollusks from particular sites and formations, the 16 page document below is a compilation of all Eastern United States Piacenzian fossils in my collection both vertebrate and invertebrate. The ability to observe different species geographically has led to changes that can be seen if comparing mollusks in the list below to those noted from my previous posts. I have eliminated species which were obviously the same but named differently based upon the regional description of the molluscan fauna by earlier research. The list is not meant to be comprehensive of these deposits, but more of a guide of what can be found. Although my collection is strong in Sarasota area Pinecrest, Jackson Bluff Formation and Zone 2 Yorktown, it is very weak in Pinecrest fauna from the coral reef facies near Miami and the Kissimmee River area, weak in the Duplin Formation (only two localities sampled), and almost absent other than a few trades from early Piacenzian faunas from the Raysor and Goose Creek Formations of the Carolinas. For a more extensive list of species from this period of time I would refer those interested in mollusks to Campbell (1993) and for Florida vertebrates to Hulbert (2001). Piacenzian Fauna List_Reagin.pdf The systematics of the specimens listed are by those fields that I find the most useful in query searches within my Access database and for the most part are as follows: Phylum, Class, Order, Family, Genus, Species, and Subspecies. In stating the distribution of each species, only the formation is noted not the individual members of the Yorktown and Tamiami Formations. Abbreviations used are Yorktown (Y), Duplin (D), Jackson Bluff (J), Tamiami (T) Chowan River (C ), Goose Creek (G) and Raysor (R ). For those taxa which are near to another cf. (similar to) was used. Less specific affinity (aff.) as well as species undetermined (sp.) are designated. The reasoning behind classification I used is addressed in the notes section below. NOTES Algae. A single species of calcareous algae was found in the limestone facies (Ochopee) of the Tamiami Formation which could not be identified to genus or species. Bryozoa. The identification of bryozoa is highly specialized requiring microscopic identification of various feeding structures. Due to a lack of references and interest I identified most as bryozoa species. Anthozoa. Eleven species of coral were collected; almost all of which are from the Pinecrest. The exception is the ubiquitous Septastrea marylandica which led a commensal lifestyle by growing on hermit crab inhabited gastropod shells. The other coral outside the Pinecrest was Septastrea crassa found near Williamsburg, Virginia which I obtained with a collection of Zone 2 Yorktown fossils in a trade from the 80s. Since I did not collect it personally and have not found this particular species at any of the numerous Zone 2 sites that I have collected over the past decade I have designated it as questionable from the Yorktown (Y?). Brachiopoda. Only a single Upper Pliocene brachiopod is listed. Discinisca lugrubris is a geologically wide ranging species found from the Lower Miocene to the Upper Pliocene colder water Bed 11 of the Pinecrest Member of the Tamiami Formation and the Jackson Bluff Formation. Mollusca. Since Piacenzian deposits are known world wide for their shell beds, it stands to reason that mollusks should dominate. The list contains 244 species and subspecies of bivalves, 370 of gastropods and 6 scaphopods. In general, the warmer the water, the higher is gastropod diversity. The list shows that bivalves are wide ranging and less so with gastropods where many more were found only in the warmer water Tamiami Formation. Aragonitic shells do not preserve well in carbonate environments and are often difficult to identify to species. Those shells from the Ochopee Member of the Tamiami Formation that were preserved as internal casts that I felt were probably represented in Pinecrest were not listed separately (i.e. Ficus sp. Internal cast from the Ochopee is probably Ficus jacksonensis from the Pinecrest). I followed the systematics of Turgeon et. al. (1998) which Roger Portell Director, Division of Invertebrate Paleontology of the Florida Museum of Natural History uses for the mollusks in the Florida Paleontology Society publications. This has led to some interesting changes in classification of gastropods within my collection. In a previous post to the forum, I had mentioned that at some point the subgenera of the family Turritellidae had been reclassified to genera. As stated by Turgeon concerning several recent species that were reclassified in this manner “We do not know the source of this reclassification nor have we seen evidence of subsequent acceptance...” therefore I reclassified all genera in Turritellidae back to Turritella with the exception of valid Vermicularia. The most drastic change in classification had to be with members from the families Turridae, Drillidae, and Conidae. I originally classified all turrids in Turridae by older systematics based solely on shell characteristics. I have known for awhile that at some point the family had been split based upon internal structure of the animal itself and DNA studies. What I did not know was that some of those species had been reclassified as Conidae. Turgeon noted that the study was controversial but was supported by anatomical and radular data and also stated that the affected subfamilies would be better suited in their own family. It was difficult for me to classify genera Glyptostoma and Cythara as Conidae, but I did so since I committed to using Turgeon. Cirripedia. Barnacles were more diverse in the Eastern US Upper Pliocene than today but much like bryozoa their specific identification is difficult. Factors for species id include the tubular structure of the outer wall and the internal plates that protect the animal. I feel that most of my identifications are correct however some are based upon morphological features of the outer shell and geographical range and thus might not be accurate. Decapoda. Crabs are a common component of shell beds, however due to the formation of the beds by winnowing, crabs are rarely preserved intact. The majority of crab finds are as isolated legs, claws, and occasional carapaces. Very little study has been made of Pliocene crabs, but most notable are publications by Rathbun (1935) who identified a wide geographical range of species and those of Florida by Portell and coauthors (2002, 2004). The crabs of the Yorktown Formation are not characterized and in many cases at generic level I used similar to reference (Cf.) which like Cirripedia does not follow proper identification rules. Echinoids. Much like crabs, disarticulated echinoid remains can be common in shell beds. In limestone however, because of their calcitic tests and gentle conditions in carbonate environments, echinoids can be preserved intact. I have not collected in the Raysor and Goose Creek Formations but I did receive echinoids from these deposits in trades from the 90s. At one point both of these units were considered members of the Duplin Formation. This has led to designation in the list (D/R) meaning that the original label listed Duplin Formation but due to the attached calcareous matrix, I believe that the specimens are from the Raysor. Vertebrates. Those collectors who have been fortunate to collect at the PCS/Lee Creek Mine are well aware of the rich vertebrate fauna found in the Yorktown Formation. The Yorktown however is divided into two different units—Zone 1 Lower Pliocene (Zanclean) and Zone 2 Upper Pliocene (Piacenzian). One of the distinguish features of these two zones is the richness of vertebrates in Zone 1 compared to their very sparse nature in Zone 2. Vertebrates during this interval are only common in Pinecrest Beds 4 and 11 and a bone layer in Bed 3 consisting of a mass die off of cormorants during a red tide which I never collected. Marine vertebrates can also be found within the Jackson Bluff Formation but not as plentiful as the previously described beds. Redeposited vertebrate remains are found in the Upper Pliocene of the Carolinas and Virginia and are not included in my list. These include teeth of the Cretaceous sharks Squalicorax kaupi and Scapanorhynchus texanus that I have found in the Duplin Formation and vertebrates from the lag deposit found at the contact between the Upper Cretaceous Black Creek Group and Zone 2 Yorktown Formation at my locality 1012 which probably represented concentrated bones and teeth from the Lower Pliocene and Upper Miocene. Upper Pliocene vertebrate remains besides bony fish, shark and ray in my collection include one marine turtle, one land tortoise, a capybara, a walrus, and a dugong. I classified large whale remains as Mysticeti and smaller remains as Odontoceti dolphin although there could be crossover. REFERENCES Numerous references were used and I have them listed according to those for identification or taxonomy and those that I used in writing about the geology or ecology of the deposits described within my blog. In addition to the below publications, I found Greta Polites Fossil Muricidae Website (http://glpolites.us/murex/index.htm) to be invaluable in eliminating synonymous species. My only deviation from her list was with Ecphora which I only recognized two species, E. quadricostata and bradlyae. Identification Campbell, Lyle. 1975. Check List of Marine Pliocene Mollusks of Eastern North America in Plio-Pleistocene Faunas of the Central Carolina Coastal Plain. Geologic Notes (South Carolina Division of Geology) Vol. 19, No. 3. Campbell, Lyle. 1993. Pliocene Molluscs from the Yorktown and Chowan River Formations in Virginia. Virginia Division of Mineral Resources Publication 127. Dall W.H. 1890-1903. Contributions to the Tertiary Fauna of Florida, with Especial Reference to the Miocene Silex-Beds of Tampa and the Pliocene Beds of the Caloosahatchie River, Part I: Pulmonate, Opisthobranchiate and Orthodont Gastropods, Transactions of the Wagner Free Institute of Science of Philadelphia 3(1-VI). Gardner, J. A. 1944. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina: Part 1. Pelecypoda, United States Geological Survey Professional Paper 199-A: iv, pages 1-178, plates 1-23 Gardner, J. A. 1948. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina: Part 2. Scaphopoda and Gastropoda, United States Geological Survey Professional Paper 199-B: iv, pages 179-310, plates 24-38, [iii] Gardner, J. A. and T.H. Aldrich. 1919. Mollusca from the Upper Miocene of South Carolina: with Descriptions of New Species. Proceedings of the Academy of Natural Sciences of Philadelphia 71: pages 17-53. Gibson, Thomas G. 1987. Miocene and Pliocene Pectinidae (Bivalvia) from the Lee Creek Mine and Adjacent Areas in Geology and Paleontology of the Lee Creek Mine, North Carolina, II. Smithsonian Contributions to Paleobiology No. 61. Hendricks, Jonathan. 2008. The genus Conus (Mollusca: Neogastropoda) in the Plio-Pleistocene of the southeastern United States, Bulletins of American Paleontology 375. Kohno, Naoki and Ray, Clayton E. 2008. Pliocene Walruses from the Yorktown Formation of Virginia and North Carolina, and a Systematic Revision of the North Atlantic Pliocene Walruses in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Mansfield, W.C. 1930. Miocene Gastropods and Scaphopods of the Choctawhatchee Formation of Florida, Florida Geological Survey Bulletin 3, 189 pages. Mansfield, W.C. 1931. Some tertiary mollusks from southern Florida. Proceedings of the United States National Museum, v. 79. Mansfield, W.C. 1931. Pliocene Fossils from Limestone in Southern Florida in Shorter Contributions to General Geology, USGS Professional Paper 170, 11 pages. Mansfield, W.C. 1932. Miocene Pelecypods of the Choctawhatchee Formation of Florida, Florida Geological Survey Bulletin 8, 233 pages. Mansfield, W.C. 1936. Stratigraphic Significance of Miocene, Pliocene, and Pleistocene Pectinidae in the Southeastern United States, Journal of Paleontology, Vol 10, No. 3, 24 pages. Mansfield, W.C. 1939. Notes on the Upper Tertiary and Pleistocene Mollusks of Peninsular Florida, Florida Geological Survey Bulletin 18, 128 pages. Mansfield, W.C., 1943 [1944]. Stratigraphy of the Miocene of Virginia and the Miocene and Pliocene of North Carolina in Gardner, Julia ed. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina. USGS Professional Paper 199A, p. 1-19. Hollister, S.C. 1971. New Vasum Species of the Subgenus Hystrivasum. Bulletins of American Paleontology 262. Olsson, A.A. 1967 (1993 Reprint). Some Tertiary Mollusks from South Florida and the Caribbean, Originally - Bulletins of American Paleontology 54(242), The Paleontological Research Institute Special Publication 19: pages 11-75, 9 plates Olsson, A.A., and A. Harbison. 1953 (1990 Reprint). Pliocene Mollusca of Southern Florida with Special Reference to Those from North Saint Petersburg, with special chapters on Turridae by W.G. Fargo and Vitinellidae and Fresh-water Mollusks by H.A. Pilsbry, The Academy of Natural Sciences of Philadelphia Monographs 8, The Shell Museum and Educational Foundation, 457 pages, 65 plates Olsson, A.A., and R.E. Petit. 1964. Some Neogene Mollusca from Florida and the Carolinas, Bulletins of American Paleontology 47(217): pages 509-574, plates 77-83 Olsson, A.A., and R.E. Petit. 1968 (1993 Reprint). Notes on Siphocypraea, Originally - Special Publication 9, The Paleontological Research Institute Special Publication 19: pages 77-88. Petuch, Edward J. 1994. Atlas of Florida Fossil Shells (Pliocene and Pleistocene Marine Gastropods). Chicago Spectrum Press. Portell, Roger W. and Craig W. Oyen. June 2002. Pliocene and Pleistocene Echinoids. Florida Fossil Invertebrates Part 3, 30pp. Portell, Roger W. and Jeffery G. Agnew. February 2004. Pliocene and Pleistocene Decapod Crustaceans. Florida Fossil Invertebrates Part 4, 29 pp. Portell, Roger W. November 2004. Eocene, Oligocene and Miocene Decapod Crustaceans. Florida Fossil Invertebrates Part 4, 29 pp. Portell, Roger W. and B. Alex Kittle. December 2010. Mollusca, Bermont Formation (Middle Pleistocene). Florida Fossil Invertebrates Part 13, 40 pp. Rathbun, Mary J. 1935. Fossil Crustacea of the Atlantic and Gulf coastal plain. Geological Society of America. Special papers; no. 2. Tucker, H.I. and Druid Wilson. 1932. Some new or otherwise interesting fossils from the Florida Tertiary. Bulletins of American paleontology; v. 18: no. 65. Tucker, H.I. and Druid Wilson. 1933. A second contribution to the Neogene paleontology of South Florida. Bulletins of American paleontology; v. 18: no. 66. Tuomey, M., and F.S. Holmes. 1855-1856 (1974 Reprint). Pleiocene Fossils of South-Carolina: Containing Descriptions and Figures of the Polyparia, Echinodermata and Mollusca, Original pages 1-30 and plates 1-12 published in 1855, Original pages 31-152 and plates 13-30 published in 1856, The Paleontological Research Institution Special Publication 12: xvi, 152 pages, 30 plates, [addendum] Ward L.W. and Blackwelder, B.W. 1975. Chesapecten, a New “Genus of Pectinidae (Mollusca: Bivalvia) from the Miocene and Pliocene of Eastern North America. USGS Professional Paper 861. Whitmore, Frank C. Jr and Kaltenbach, James A. 2008. Neogene Cetacea of the Lee Creek Phosphate Mine, North Carolina in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Weisbord, Norman E. 1966. Some late Cenozoic cirripeds from Venezuela and Florida. Bull. Amer. Paleont., vol. 50, no. 225, pp. 1-145, pls. 1-12. Weisbord, Norman E. 1974. Late Cenozoic Corals of South Florida. Bulletins of American Paleontology vol. 66, no. 285. 544 pp. Zullo, Victor A., 1992. Revision of the balanid barnacle genus Concavus Newman. Supplement to Journal of Paleontology, v. 66, no. 6, pt. II. Zullo, Victor A. and Portell, Roger W. 1993. Paleobiogeography of the Late Cenozoic Barnacle Fauna of Florida in The Neogene of Florida and Adjacent Regions, Florida Geological Survey Special Publication No. 37. Paleoecology Allmon, Warren D. 1992. Whence Southern Florida’s Plio-Pleistocene shell beds? Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Allmon, Warren D; Rosenberg, Gary; Portell, Roger W.; and Schindler, Kevin S. 1993. Diversity of Atlantic Coastal Plain Mollusks since the Pliocene. Science, vol. 260:1626-1629. Allmon, Warren D; Spizuco, Mathew P. and Jones, Douglas S. 1995. Taphonomy and paleoenvironment of two turritellid-gastropod-rich beds, Pliocene of Florida. Lethaia, vol. 28:75-83. Allmon, Warren D; Emslie, Steven D.; Jones, Douglas S.; and Morgan, Gary S. 1996. Late Neogene Oceanographic change along Florida’s West Coast: Evidence and mechanisms. The Journal of Geology, vol. 104:143-162. Christie, Max. 2009. Ecological Interactions Across a Plio-Pleistocene Interval of Faunal Turnover: Naticid Cannibalism North and South of Cape Hatteras, North Carolina. Departmental Honors in Interdisciplinary Studies Thesis, The College of William and Mary. Geary, Dana H. and Allmon, Warren D. 1990. Biological and Physical Contributions to the Accumulation of Strombid Gastropods in a Pliocene Shell Bed. Palaios vol. 5:259-272. Jones, Douglas S and Allmon, Warren D. 1999. Pliocene marine temperatures on the West Coast of Florida: Estimates from mollusk shell stable isotopes In J.H. Wrenn, J.-P. Suc, and S.A.G. Leroy, eds., The Pliocene: Time of Change. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 241-250. Molnar, Peter. 2008. Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography Volume 21. Petuch, Edward J. 2004. Cenozoic Seas. CRC Press. Petuch, Edward J. 2007. The Geology of the Everglades and Adjacent Areas. CRC Press. Schmidt, D. N., 2007. The closure history of the Panama Isthmus: Evidence from isotopes and fossils to models and molecules. In: Williams, M., Haywood, A. M., Gregory, J. F., and Schmidt, D. N. Eds.), Deep time perspectives on climate change - marrying the signal from computer models and biological proxies. Geological Society of London, London. Biostratigraphy Campbell, Kenneth M. 1985. Alum Bluff Liberty County, Florida. Florida Geological Survey Open File Report 9. Ketcher, Kathleen. 1992. Stratigraphy and Environment of Bed 11 of the "Pinecrest" Beds at Sarasota, Florida in Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Means, Harley. 2002. Introduction to the Geology of the Upper Apalachicola River Basin in Geologic Exposures Along the Upper Apalachicola River. Southeastern Geological Society Field Trip Guidebook 42. Missimer, Thomas M. 1992. Stratigraphic relationships of sediment facies within the Tamiami Formation of Southwest Florida: Proposed intraformational correlations. Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Petuch, E.J. 1982. Notes on the molluscan paleontology of the Pinecrest Beds at Sarasota, Florida with the description of Pyruella, a stratigraphically important new genus: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 134, p. 12–30. Ward, Lauck W. 1992. Tertiary Molluscan Assemblages from the Salisbury Embayment of Virginia. Virginia Journal of Science, Volume 43, no. 1B. Ward, Lauck W. 1992. Diagnostic Mollusks from the APAC Pit, Sarasota, Florida in Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida, Florida Geological Survey Special Publication No. 36. Ward, Lauck W. 1993. Pliocene Stratigraphy and Biostratigraphy, Virginia to Florida in The Neogene of Florida and Adjacent Regions, Florida Geological Survey Special Publication No. 37. Ward, Lauck W. 2008. Synthesis of Paleontological and Stratigraphic Investigations at the Lee Creek Mine, Aurora, NC (1958-2007) in The Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication No. 14. Yon, J. William. 1965. Adventures in geology at Jackson Bluff. Florida Geological Survey: Special publication 14. Systematics Hulbert, Richard C. (ed.). 2001. The Fossils Vertebrates of Florida. University Press of Florida. Turgeon, D.D. et al. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. Second edition. American Fisheries Society Special Publication. No. 26. 526 pp.
    • 8 comments
    • 5,610 views
  • JohnJ

    Ancient Hunters

    By JohnJ

    June 5, 2010 Barry held his camera barely two feet away from the back of an Agkistrodon piscivorus. Although a small snake, it was still very dangerous and he positioned his camera based on years of experience with these reptiles. Known more commonly as a Cottonmouth or Water Moccasin, the twelve inch juvenile snake had coloration similar to the closely related Copperhead. However, its patterns were muted by late afternoon shadows in a remote location that was not favorable to an easy medical evacuation. So, we slowly moved away and eased our paddles back in the water to complete an adventure which began long before daylight.     Almost twelve hours earlier my friend and I had packed our gear, food, and water into my eighteen foot canoe. Soon after, our paddles fell into a synchronous rhythm that allowed us to quietly experience an aquatic wilderness. We were searching in Texas - hunting in alluvial debris and Pleistocene terraces for the slightest hint of extinct creatures. Our unrushed pace allowed us the time to get a feel for the local geology. Occasionally, groundwater from the surrounding area made its way to the base of the Pleistocene gravels and created springs which emerged just above older impermeable shale. The cool water supported rich vegetation that resisted the summer sun. It was also a visual key to the strata we were trying to find.     A little later, we found an area where the gravel spilled onto a ledge just above the water. Almost immediately I spotted a gravel encrusted bone fragment. I looked over to see Barry higher up on the river terrace. Still scanning the area, I hollered, “Hey, I found some mineralized bone over here. Uhhh…wait, here’s another one.” I noticed the second piece was gnarly and pitted while Barry made his way down to inspect my finds.   “What do you think of the encrusted bone?” I asked.  He replied, “Not sure; but there’s no doubt it’s old. Which bone do you think it is?”   I tried to imagine the fossil without the encrusting gravel, “Looks like it could be the ‘joint’ end of a scapula…I’m not sure about the second one, though.”   Before and after cleaning – proximal scapula & unknown fragment   I headed back to the canoe to pack away my finds while Barry searched further down the ledge. It wasn’t long before he yelled he had found more bone, and after I paddled the boat over to him, he grinned and asked me to find the camouflaged fossil. The fragment was difficult to spot amid the varied textures of rock and silt. We were off to a good start.   Barry's mineralized bone fragment   In Texas, June temperatures can quickly reach the upper 90’s. We maintained a regular fluid intake and an occasional soak in the water. Proper hydration and cooling were essential for us to enjoy an amazing adventure versus a headache pounding endurance test. Since we still had more than a dozen miles to travel, the hot conditions could not be ignored.     A few miles later a short rocky ledge barely emerged from the water. It looked like a good spot to check and take a break. What I really did not expect was to step a few feet from the boat and see a broken stone dart point. I looked at it with a little skepticism; the area seemed like a place fisherman would use to access the water and I wondered if someone had passed the time trying to replicate an ancient weapon. But the patina on a few nearby flakes confirmed the find was old.   Barry searched the rocky debris fan on the downstream end of the ledge. I let him know to keep an eye out for more than bone and kept scanning the ground. Before me was an area the size of two cars where the water had peeled away part of an upper bank which had slipped into the water. I stopped. There, in the gravel and weeds, were more flakes…and another dart point! As I reached for my camera, I saw another broken point by my knee…a cool moment. Then things started to get comical - in an amazing sort of way - because as I took the photo of the first point, I spotted a third one just beyond it…an incredible moment!     Still kneeling in the same spot, I yelled to Barry, “Hey, you’re not going to believe this, but I’ve found…hang on….” I shook my head in disbelief at the fourth late Archaic projectile point tucked in the gravel. “You have to come over here, now,” I smiled. I tried to explain to him what had just happened – pointing out each of the finds. He was as awestruck as I, but we both almost lost composure when, within seconds of ‘show and tell’, another light colored point met my eye a few inches from where I laid the paddle. I edged backward to get a good camera angle. Then, I just looked up at Barry in stunned silence and back down again beside my other knee at a small gray-purple dart point. That is when we both erupted with the excitement of two kids.     “I’m now walking away. There have to be more here; so you find them,” I jokingly announced as I headed upstream to survey the ledge. Savoring an unbelievable fifteen minutes of discovery included the analytical questions forced by the finds. Often people have asked, “Where did these artifacts come from?” Sometimes the answer is simple because the ‘site’ still exists. Other times, I will touch two fingers together in front of me, representing a point in space, because similar coordinates may be all that remain of ancient eroded camps. My quick recon of the area seemed to confirm a similar origin for these artifacts. Our timing had offered us the chance to experience something that would have been erased by the next flood.   My six dart points fill Barry’s hand   Barry’s voice carried down the bank, “I found one!” I saw him gently scratching the sand and gravel in the weeds. I took in the view of the area because I wanted to remember this place and time. Barry called out again, “Hey, you should see this large white base I found!” By the time I made it back to him, he had found another dart! While he pointed out his finds, I felt like we were functioning in a mild state of shock – still trying to wrap our minds around what was happening. After a few more broken finds and photos, we cooled off in the water. In all we found 19 pieces; some were complete and some were fragments.     Dream-like remnants of the artifact discoveries stayed with us for miles. I told Barry I was not sure I would have believed the event if I had not been part of it. Roughly thirteen hundred years earlier, someone made the weapons we found. Handling them was like touching an old pocket knife owned by your great grandfather or holding an old wooden spoon used by your great grandmother - except, they were much older and no one remembered the owners anymore. We could not know what the circumstances were during the last moments someone held these artifacts, but we were the next men to hold them and imagine those days.   We found a few pieces of fossil bone over the next couple of hours and it really began to get hot. To get relief from the temperature, we paddled closer to the shady banks. On few occasions we startled beavers from their dens. Not many things can get your attention quicker than a forty pound animal hurtling into the water on the edge of your vision. My only regret was that the camera had not recorded our comical reactions.   Then, as we rounded a large bend, a huge gravel bar came into view. In the distance, I could see something big lying on the rocks. “Barry, what’s that?”   “I don’t know….” He shaded his eyes and leaned forward, then exploded, “IT’S A HUGE GAR!” He spun to face me, “Can I have the SKULL?!” He spun back, “It’s HUGE! You’ve got to let me have it, please!”   He sounded like a ten year old begging for his favorite birthday present. It was hilarious. But my smile was temporarily gagged when I caught a whiff of the almost dry carcass. “If you can separate the skull from the rest, you can have it…but it stays on your end of the canoe,” I winced.     The smell matched the size of the alligator gar – it was a monster. I was fascinated to see such a large specimen up close. Barry finally separated his prize from its ragged remains. Then, he placed it in the canoe under his seat and we continued to search the bar.     The multi-colored gravel camouflaged many pieces of petrified wood and the new ‘gar skull owner’ took advantage of the canoe’s carrying capacity. We left shore a little heavier and smellier. Unfortunately for me, the prevailing wind came from the bow of the boat. I joked with him about the odor coming from his direction, but he firmly insisted he was unaware of any stench.   On another bar, the gravel teased us with more bits of bone; then Barry spotted a large brown lump. He called me over to take some photos. Whose bone he had found was not immediately obvious; but it had some size. Only after he freed it from the sand were the features of a large vertebra confirmed. Likely from a mammoth, it had suffered the erosive effects of time and water. Yet, Barry grinned. He had accomplished one of the goals we had for the trip – find mammoth bone.         The heat was relentless, but we kept cooling off and drinking. Even the butterflies were frequently tapping moisture and minerals in the damp sand. Eventually, we reached an area where the channel narrowed and we took advantage of the shade. I was looking for beaver dens when Barry cried, “Snake! Back there by the large stump!”     We buried the paddles in a series of strong back strokes to reverse our direction. I finally spotted the handsome reptile crawling into a small pile of logs. I could tell he wanted to catch it, when he almost whispered, “Elaphe obsoleta lindheimeri.” After three seconds of heat affected thinking, I realized he had not issued curses to move faster, but had just named the scientific classification for a Texas Rat Snake – the name that had passed through my mind 5 seconds earlier….  Barry scrambled up the bank and had the snake in hand within two minutes. He slowly manipulated it while I took photos. I have always enjoyed my encounters with these non-poisonous reptiles. They can be very aggressive and strike repeatedly, or try to intimidate any threats with their loud hiss and vibrating tail. He left on the log where we found it.     About a half hour downstream we were exposed again to the late afternoon sun. It reflected from the water and the barren high bluffs beside us. We paddled and scanned both water and banks. Through the salty sweat in my eyes, I saw something out of place halfway up one of the bluffs.   “OK, that can’t be what I think it is, can it Barry?” A bowling ball sized dome contrasted sharply with the surrounding tan soil. We slowed the canoe to a stop. I remembered the “dome” of a four foot mammoth humerus I had found almost a year earlier…. My heart rate increased.     Barry insisted, “John, that shape is too perfect; it has to be a bone.” The closer we got the boat, the more my pulse quickened. From fifteen feet below it, I still had to get closer to allow myself to acknowledge the obvious…it was a bone!     We positioned the canoe as close as possible to the vertical bank. The water was not moving fast there, but it was deep. In a tricky move that involved me stepping on the tip of the stern and stabbing my rock hammer into the soil of the steep ledge above, I pulled myself up to a spot where I could rest. Our access point was a little downstream of the “dome”, so I had to dig footholds to make my way to the find. It was impressive when I could finally rest beside it. “Hey Barry, it’s bone!” I grinned.   After a difficult time staging a few digging tools, we started to excavate. I carefully determined the perimeter of the fossil and had some vivid flashbacks to last year’s humerus find. However, the deeper we dug, the more it became apparent that the rest of the bone was not attached. We tested the ‘ball’ for movement and it popped free of the matrix below. In the soil below, we did not find any more evidence of bone.     Initially it seemed there was a large scavenging scar across the surface, but after cleaning, the mark appeared to be an eroded part of the internal vascular structure. Other old gouges and marks may have been due to ancient scavenging. Shape and size suggested I had found my first mammoth ‘femur ball’ or the head of the femur. Regardless of the number of mammoth fossils I have found, they never cease to spark my imagination.   Mammoth femur head – approx. 7 inches in diameter     Scars and vascular structures   The shadows had begun to lengthen by the time we loaded the femur ball and started back downstream. Temperatures had dropped a few degrees which energized us for the next few miles. In a large eddy, we saw another snake crossing the water and sped up to see it. Both of us recognized the juvenile Water Moccasin as it paused and floated on the water. Barry pulled out his camera and I positioned the canoe to assist him. All was going well until the young snake thought the boat would make a good rest stop. The most important result of the next few moments was that no one entered the water, and nothing entered the canoe. I repositioned us to allow the little pit viper to reach the bank. It seemed to respond to the security of solid ground and assumed the confident demeanor of the species.     We reached the take-out after twelve hours on the water. Tired, but feeling the satisfaction of an incredible adventure, we completed a relatively short shuttle run back upstream. The trip had so many layers – so many memories. We hunted and found what we sought. And somewhere between our imaginations, the water, willows, cottonwood, and stone, we caught a reflective glimpse of the ancient hunters.
    • 26 comments
    • 5,021 views

Our community blogs

  1. A topic early last year in the Fossil Forum asked “What are your goals for 2015”. My response in that discussion was a desire to collect from the Duplin Formation in South Carolina to expand upon the species list within my Pliocene Project. Although I did not have the opportunity to bring those specific goals to fruition, I did add significantly to that list with unplanned collecting trips to two sites exposing the Golden Gate Member of the Tamiami Formation containing a number of species not found within the Pinecrest Member further north. However more so than any other unit that I sampled in 2015, was the unexpected opportunity to collect from several localities exposing the Lower Pleistocene (Gelasian) Caloosahatchee Formation. As I have previously reported the Caloosahatchee contains a mostly tropical fauna containing many endemic mollusks which lived within the flooded Everglades Basin following a 200,000 year sea level regression marking the end of the Pliocene Epoch.

    My previous collecting endeavors in the Caloosahatchee had been restricted to the western portion of the Everglades/Big Cypress region and the trip that I attended in January 2015 organized by the Conservancy of Southwest Florida followed that trend with a visit to a quarry in Charlotte County (Fig. 1). The mine contained massive spoil piles of shell rich material excavated years ago that had undergone heavy weathering. As a result the large well preserved gastropods which the Caloosahatchee is known for were lacking although the weathering did reveal many of the smaller species not commonly looked for by most collectors.

    blogentry-1906-0-22011700-1466113898_thumb.jpg blogentry-1906-0-56672200-1466113880_thumb.jpg blogentry-1906-0-08847500-1466115159_thumb.jpg

    Figure 1. Locality 1039. Charlotte County, Florida.

    Throughout last year I conversed with several forum members and messaging with Dozer Operator (Thanks Jonathan!) finally led to a collecting trip to the eastern half of the everglades. Unlike the incredibly hot trip with FossilDAWG and jehussey the previous week, Tropical Storm Erika was moving offshore of the Florida peninsula ensuring a wet but more bearable day in the field. Navigating heavy rain squalls with the use of Jonathan’s weather phone app, we were able to miss most of the precipitation and visited among others that day two sites exposing the Caloosahatchee Formation. The first in Martin County east of Lake Okeechobee contained primarily Caloosahatchee material with some overlying Middle Pleistocene Bermont Formation from which I was able to score examples of the larger mollusks that the Caloosahatchee is known for while Jonathan collected some interesting vertebrate material probably originating out of the Bermont (Fig. 2). The second stop further south in Palm Beach County contained equal amounts of Caloosahatchee and Bermont sediments (Fig. 3).

    blogentry-1906-0-12526200-1466113430_thumb.jpg blogentry-1906-0-13916100-1466113448_thumb.jpg blogentry-1906-0-37303200-1466114638_thumb.jpg

    Figure 2. Locality 1045. Martin County, Florida.

    blogentry-1906-0-36689300-1466113478_thumb.jpg blogentry-1906-0-28070900-1466114682_thumb.jpg blogentry-1906-0-35181300-1466114702_thumb.jpg

    Figure 3. Locality 499. Palm Beach County, Florida.

    blogentry-1906-0-04191300-1466112952_thumb.jpg blogentry-1906-0-15292400-1466112951_thumb.jpg blogentry-1906-0-10457900-1466112953_thumb.jpg blogentry-1906-0-94574900-1466112949_thumb.jpg blogentry-1906-0-07294100-1466112954_thumb.jpg

    Figure 4. Some gastropods from the Caloosahatchee Formation of South Florida.

    Both sites particularly the latter, demonstrate the difficulty in identifying fossils within the Florida Plio-Pleistocene. Each of the shell bearing units in South Florida contain endemic species found only within designated deposits, however as seen in my Tamiami Gallery a number of molluscan species survived into recent times as well as some which persisted past the Upper Pliocene but becoming extinct later prior to the Holocene. Adding to the confusion are non-peer reviewed works which have taxonomically split new species based upon the unit and/or geographical region placing much emphasis on slight phenotypic variation. In the list below, I have attempted to be as accurate as possible in assigning species that belong in the Caloosahatchee, however short of in-situ collection there could be species particularly those collected from locality 499 that could have originated from the Bermont Formation. In addition, the below list also is the first that I have produced using marine invertebrate taxonomy as presented by the World Register of Marine Species (WoRMS) . This includes bivalve taxonomy proposed by Carter et. al., 2011 and gastropod taxonomy from numerous researchers. As shown in the list, not all of the gastropod families have been assigned to specific Orders and are waiting further study and DNA analysis. I will be applying the same classification to my other Plio-Pleistocene faunal lists as I update them in future posts.

    Caloosahatchee species list 040416.pdf

    References

    Joseph G. Carter, Cristian R. Altaba, Laurie C. Anderson, Rafael Araujo, Alexander S. Biakov, Arthur E. Bogan, David C. Campbell, Matthew Campbell, Chen Jin-hua, John C. W. Cope, Graciela Delvene, Henk H. Dijkstra, Fang Zong-jie, Ronald N. Gardner, Vera A. Gavrilova, Irina A. Goncharova, Peter J. Harries, Joseph H. Hartman, Michael Hautmann, Walter R. Hoeh, Jorgen Hylleberg, Jiang Bao-yu, Paul Johnston, Lisa Kirkendale, Karl Kleemann, Jens Koppka, Jiřź Kříž, Deusana Machado, Nikolaus Malchus, Ana Márquez-Aliaga, Jean-Pierre Masse, Christopher A. McRoberts, Peter U. Middelfart, Simon Mitchell, Lidiya A. Nevesskaja, Sacit Özer, John Pojeta Jr., Inga V. Polubotko, Jose Maria Pons, Sergey Popov, Teresa Sánchez, André F. Sartori, Robert W. Scott, Irina I. Sey, Javier H. Signorelli, Vladimir V. Silantiev, Peter W. Skelton, Thomas Steuber, J. Bruce Waterhouse, G. Lynn Wingard and Thomas Yancey. 2011. A Synoptical Classification of the Bivalvia (Mollusca). Paleontological Contributions (4):1-47. 2011

  2. JohnJ
    Latest Entry

    June 5, 2010

    Barry held his camera barely two feet away from the back of an Agkistrodon piscivorus. Although a small snake, it was still very dangerous and he positioned his camera based on years of experience with these reptiles. Known more commonly as a Cottonmouth or Water Moccasin, the twelve inch juvenile snake had coloration similar to the closely related Copperhead. However, its patterns were muted by late afternoon shadows in a remote location that was not favorable to an easy medical evacuation. So, we slowly moved away and eased our paddles back in the water to complete an adventure which began long before daylight.

     

    blogentry-420-050912500%201282626486.jpg
     

    Almost twelve hours earlier my friend and I had packed our gear, food, and water into my eighteen foot canoe. Soon after, our paddles fell into a synchronous rhythm that allowed us to quietly experience an aquatic wilderness. We were searching in Texas - hunting in alluvial debris and Pleistocene terraces for the slightest hint of extinct creatures.

    Our unrushed pace allowed us the time to get a feel for the local geology. Occasionally, groundwater from the surrounding area made its way to the base of the Pleistocene gravels and created springs which emerged just above older impermeable shale. The cool water supported rich vegetation that resisted the summer sun. It was also a visual key to the strata we were trying to find.

     
    blogentry-420-021851800%201282626979.jpgblogentry-420-066686000%201282627615.jpg
     

    A little later, we found an area where the gravel spilled onto a ledge just above the water. Almost immediately I spotted a gravel encrusted bone fragment. I looked over to see Barry higher up on the river terrace. Still scanning the area, I hollered, “Hey, I found some mineralized bone over here. Uhhh…wait, here’s another one.” I noticed the second piece was gnarly and pitted while Barry made his way down to inspect my finds.

     

    “What do you think of the encrusted bone?” I asked.  He replied, “Not sure; but there’s no doubt it’s old. Which bone do you think it is?”

     

    I tried to imagine the fossil without the encrusting gravel, “Looks like it could be the ‘joint’ end of a scapula…I’m not sure about the second one, though.”

     

    Before and after cleaning – proximal scapula & unknown fragment

    blogentry-420-022818600%201282628017.jpg

     

    I headed back to the canoe to pack away my finds while Barry searched further down the ledge. It wasn’t long before he yelled he had found more bone, and after I paddled the boat over to him, he grinned and asked me to find the camouflaged fossil. The fragment was difficult to spot amid the varied textures of rock and silt. We were off to a good start.

     

    Barry's mineralized bone fragment

    blogentry-420-097821100%201282628296.jpgblogentry-420-052777000%201282628349.jpg

     

    In Texas, June temperatures can quickly reach the upper 90’s. We maintained a regular fluid intake and an occasional soak in the water. Proper hydration and cooling were essential for us to enjoy an amazing adventure versus a headache pounding endurance test. Since we still had more than a dozen miles to travel, the hot conditions could not be ignored.

     

    blogentry-420-009548900%201282628677.jpg
     

    A few miles later a short rocky ledge barely emerged from the water. It looked like a good spot to check and take a break. What I really did not expect was to step a few feet from the boat and see a broken stone dart point. I looked at it with a little skepticism; the area seemed like a place fisherman would use to access the water and I wondered if someone had passed the time trying to replicate an ancient weapon. But the patina on a few nearby flakes confirmed the find was old.

     

    Barry searched the rocky debris fan on the downstream end of the ledge. I let him know to keep an eye out for more than bone and kept scanning the ground. Before me was an area the size of two cars where the water had peeled away part of an upper bank which had slipped into the water. I stopped. There, in the gravel and weeds, were more flakes…and another dart point! As I reached for my camera, I saw another broken point by my knee…a cool moment. Then things started to get comical - in an amazing sort of way - because as I took the photo of the first point, I spotted a third one just beyond it…an incredible moment!

     

    blogentry-420-037593300%201282628859.jpgblogentry-420-018138800%201282628905.jpgblogentry-420-079831300%201282628939.jpg
     

    Still kneeling in the same spot, I yelled to Barry, “Hey, you’re not going to believe this, but I’ve found…hang on….” I shook my head in disbelief at the fourth late Archaic projectile point tucked in the gravel. “You have to come over here, now,” I smiled. I tried to explain to him what had just happened – pointing out each of the finds. He was as awestruck as I, but we both almost lost composure when, within seconds of ‘show and tell’, another light colored point met my eye a few inches from where I laid the paddle. I edged backward to get a good camera angle. Then, I just looked up at Barry in stunned silence and back down again beside my other knee at a small gray-purple dart point. That is when we both erupted with the excitement of two kids.

     

    blogentry-420-025949300%201282629115.jpgblogentry-420-046416800%201282629141.jpg
     

    “I’m now walking away. There have to be more here; so you find them,” I jokingly announced as I headed upstream to survey the ledge. Savoring an unbelievable fifteen minutes of discovery included the analytical questions forced by the finds. Often people have asked, “Where did these artifacts come from?” Sometimes the answer is simple because the ‘site’ still exists. Other times, I will touch two fingers together in front of me, representing a point in space, because similar coordinates may be all that remain of ancient eroded camps. My quick recon of the area seemed to confirm a similar origin for these artifacts. Our timing had offered us the chance to experience something that would have been erased by the next flood.

     

    My six dart points fill Barry’s hand

    blogentry-420-077425400%201282629247.jpg

     

    Barry’s voice carried down the bank, “I found one!” I saw him gently scratching the sand and gravel in the weeds. I took in the view of the area because I wanted to remember this place and time. Barry called out again, “Hey, you should see this large white base I found!” By the time I made it back to him, he had found another dart! While he pointed out his finds, I felt like we were functioning in a mild state of shock – still trying to wrap our minds around what was happening. After a few more broken finds and photos, we cooled off in the water. In all we found 19 pieces; some were complete and some were fragments.

     

    blogentry-420-033331000%201282629918.jpgblogentry-420-006458000%201282629946.jpgblogentry-420-012897400%201282629989.jpgblogentry-420-021344300%201282630019.jpgblogentry-420-000488800%201282630209.jpg
     

    Dream-like remnants of the artifact discoveries stayed with us for miles. I told Barry I was not sure I would have believed the event if I had not been part of it. Roughly thirteen hundred years earlier, someone made the weapons we found. Handling them was like touching an old pocket knife owned by your great grandfather or holding an old wooden spoon used by your great grandmother - except, they were much older and no one remembered the owners anymore. We could not know what the circumstances were during the last moments someone held these artifacts, but we were the next men to hold them and imagine those days.

     

    We found a few pieces of fossil bone over the next couple of hours and it really began to get hot. To get relief from the temperature, we paddled closer to the shady banks. On few occasions we startled beavers from their dens. Not many things can get your attention quicker than a forty pound animal hurtling into the water on the edge of your vision. My only regret was that the camera had not recorded our comical reactions.

     

    Then, as we rounded a large bend, a huge gravel bar came into view. In the distance, I could see something big lying on the rocks. “Barry, what’s that?”

     

    “I don’t know….” He shaded his eyes and leaned forward, then exploded, “IT’S A HUGE GAR!” He spun to face me, “Can I have the SKULL?!” He spun back, “It’s HUGE! You’ve got to let me have it, please!

     

    He sounded like a ten year old begging for his favorite birthday present. It was hilarious. But my smile was temporarily gagged when I caught a whiff of the almost dry carcass. “If you can separate the skull from the rest, you can have it…but it stays on your end of the canoe,” I winced.

     

    blogentry-420-053601800%201282630450.jpg
     

    The smell matched the size of the alligator gar – it was a monster. I was fascinated to see such a large specimen up close. Barry finally separated his prize from its ragged remains. Then, he placed it in the canoe under his seat and we continued to search the bar.

     

    blogentry-420-080739600%201282630562.jpg
     

    The multi-colored gravel camouflaged many pieces of petrified wood and the new ‘gar skull owner’ took advantage of the canoe’s carrying capacity. We left shore a little heavier and smellier. Unfortunately for me, the prevailing wind came from the bow of the boat. I joked with him about the odor coming from his direction, but he firmly insisted he was unaware of any stench.

     

    On another bar, the gravel teased us with more bits of bone; then Barry spotted a large brown lump. He called me over to take some photos. Whose bone he had found was not immediately obvious; but it had some size. Only after he freed it from the sand were the features of a large vertebra confirmed. Likely from a mammoth, it had suffered the erosive effects of time and water. Yet, Barry grinned. He had accomplished one of the goals we had for the trip – find mammoth bone.

     

    blogentry-420-092283700%201282630766.jpgblogentry-420-056591400%201282630696.jpgblogentry-420-096814400%201282630730.jpgblogentry-420-065902000%201282630798.jpg

     

     

    blogentry-420-046390500%201282630922.jpg

     

    The heat was relentless, but we kept cooling off and drinking. Even the butterflies were frequently tapping moisture and minerals in the damp sand. Eventually, we reached an area where the channel narrowed and we took advantage of the shade. I was looking for beaver dens when Barry cried, “Snake! Back there by the large stump!”

     

    blogentry-420-014294800%201282631471.jpgblogentry-420-053043400%201282631518.jpg
     

    We buried the paddles in a series of strong back strokes to reverse our direction. I finally spotted the handsome reptile crawling into a small pile of logs. I could tell he wanted to catch it, when he almost whispered, “Elaphe obsoleta lindheimeri.” After three seconds of heat affected thinking, I realized he had not issued curses to move faster, but had just named the scientific classification for a Texas Rat Snake – the name that had passed through my mind 5 seconds earlier….  Barry scrambled up the bank and had the snake in hand within two minutes. He slowly manipulated it while I took photos. I have always enjoyed my encounters with these non-poisonous reptiles. They can be very aggressive and strike repeatedly, or try to intimidate any threats with their loud hiss and vibrating tail. He left on the log where we found it.

     

    blogentry-420-072262300%201282631693.jpgblogentry-420-078408700%201282631713.jpg
     

    About a half hour downstream we were exposed again to the late afternoon sun. It reflected from the water and the barren high bluffs beside us. We paddled and scanned both water and banks. Through the salty sweat in my eyes, I saw something out of place halfway up one of the bluffs.

     

    “OK, that can’t be what I think it is, can it Barry?” A bowling ball sized dome contrasted sharply with the surrounding tan soil. We slowed the canoe to a stop. I remembered the “dome” of a four foot mammoth humerus I had found almost a year earlier…. My heart rate increased.

     

    blogentry-420-024697200%201282632133.jpg
     

    Barry insisted, “John, that shape is too perfect; it has to be a bone.” The closer we got the boat, the more my pulse quickened. From fifteen feet below it, I still had to get closer to allow myself to acknowledge the obvious…it was a bone!

     

    blogentry-420-003680100%201282632226.jpg
     

    We positioned the canoe as close as possible to the vertical bank. The water was not moving fast there, but it was deep. In a tricky move that involved me stepping on the tip of the stern and stabbing my rock hammer into the soil of the steep ledge above, I pulled myself up to a spot where I could rest. Our access point was a little downstream of the “dome”, so I had to dig footholds to make my way to the find. It was impressive when I could finally rest beside it. “Hey Barry, it’s bone!” I grinned.

     

    After a difficult time staging a few digging tools, we started to excavate. I carefully determined the perimeter of the fossil and had some vivid flashbacks to last year’s humerus find. However, the deeper we dug, the more it became apparent that the rest of the bone was not attached. We tested the ‘ball’ for movement and it popped free of the matrix below. In the soil below, we did not find any more evidence of bone.

     

    blogentry-420-041550300%201282632344.jpg
     

    Initially it seemed there was a large scavenging scar across the surface, but after cleaning, the mark appeared to be an eroded part of the internal vascular structure. Other old gouges and marks may have been due to ancient scavenging. Shape and size suggested I had found my first mammoth ‘femur ball’ or the head of the femur. Regardless of the number of mammoth fossils I have found, they never cease to spark my imagination.

     

    Mammoth femur head – approx. 7 inches in diameter

    blogentry-420-001175200%201282632446.jpg

     

     

    Scars and vascular structures

    blogentry-420-003159200%201282632558.jpgblogentry-420-052046800%201282632574.jpg

     

    The shadows had begun to lengthen by the time we loaded the femur ball and started back downstream. Temperatures had dropped a few degrees which energized us for the next few miles. In a large eddy, we saw another snake crossing the water and sped up to see it. Both of us recognized the juvenile Water Moccasin as it paused and floated on the water. Barry pulled out his camera and I positioned the canoe to assist him. All was going well until the young snake thought the boat would make a good rest stop. The most important result of the next few moments was that no one entered the water, and nothing entered the canoe. I repositioned us to allow the little pit viper to reach the bank. It seemed to respond to the security of solid ground and assumed the confident demeanor of the species.

     

    blogentry-420-068123700%201282632674.jpg
     

    We reached the take-out after twelve hours on the water. Tired, but feeling the satisfaction of an incredible adventure, we completed a relatively short shuttle run back upstream. The trip had so many layers – so many memories. We hunted and found what we sought. And somewhere between our imaginations, the water, willows, cottonwood, and stone, we caught a reflective glimpse of the ancient hunters.

    IMG_5463bw.jpg

    IMG_5413ad.jpg

    dsc 009.jpg

    Img_5465.jpg

    Img_5417.jpg

    Img_5419.jpg

    dsc 010.jpg

    Img_5421.jpg

    Img_5422.jpg

    Img_5423.jpg

    Img_5424.jpg

    Img_5425.jpg

    Img_5426.jpg

    Img_5428.jpg

    dsc 014 1139am b.jpg

    Img_5431.jpg

    Img_5430.jpg

    Img_5432.jpg

    dsc 021 124pm.jpg

    dsc 022 125pm b.jpg

    Dsc_0020.jpg

    Dsc_0019.jpg

    Img_5438.jpg

    Dsc_0017.jpg

    IMG_5444b.jpg

    Img_5449.jpg

    Img_5453.jpg

    Img_5447.jpg

    Img_5448.jpg

    Img_5457.jpg

    Img_5459.jpg

    Img_5460.jpg

    Img_5553.jpg

    Img_5563.jpg

    Img_5564.jpg

    Img_5462.jpg

    IMG_5463bw.jpg

    IMG_5413ad.jpg

    dsc 009.jpg

    Img_5465.jpg

    Img_5417.jpg

    Img_5419.jpg

    dsc 010.jpg

    Img_5421.jpg

    Img_5422.jpg

    Img_5423.jpg

    Img_5424.jpg

    Img_5425.jpg

    Img_5426.jpg

    Img_5428.jpg

    dsc 014 1139am b.jpg

    Img_5431.jpg

    Img_5430.jpg

    Img_5432.jpg

    dsc 021 124pm.jpg

    dsc 022 125pm b.jpg

    Dsc_0020.jpg

    Dsc_0019.jpg

    Img_5438.jpg

    Dsc_0017.jpg

    IMG_5444b.jpg

    Img_5449.jpg

    Img_5453.jpg

    Img_5447.jpg

    Img_5448.jpg

    Img_5457.jpg

    Img_5459.jpg

    Img_5460.jpg

    Img_5553.jpg

    Img_5563.jpg

    Img_5564.jpg

  3. Hello Everyone its been way to long since my last entry. I've been sharing on the Facebook page because its so easy to upload from my phone. But I will start back bogging...... I miss it :)

    I found these cephalopods two weeks ago here in middle TN- Leipers Formation from what I'm told. I found it interesting how the shell casing seems to have been peeled back on both......

  4. Lepidodendrons

    blogentry-814-0-25566400-1379333148.jpgblogentry-814-0-31338200-1379333151.jpgblogentry-814-0-57246800-1379333154.jpg

    Lepidophloios laricinus

    blogentry-814-0-70893600-1379333191.jpgblogentry-814-0-93044000-1379333193.jpgblogentry-814-0-34017900-1379333196.jpg

    Seed ferns (Cyclopteris, Neuropteris, Macroneuropteris, Mariopteris, Mixoneura, seed fern rachis impression, seed fern male fructification)

    blogentry-814-0-13507100-1379333231.jpgblogentry-814-0-55645100-1379333233.jpgblogentry-814-0-10792800-1379333237.jpgblogentry-814-0-21294600-1379333240.jpgblogentry-814-0-97433700-1379333243.jpgblogentry-814-0-19723700-1379333246.jpgblogentry-814-0-43683900-1379333249.jpg

    Bothrodendrons

    blogentry-814-0-47100100-1379333594.jpgblogentry-814-0-19844700-1379333597.jpgblogentry-814-0-67461500-1379333600.jpgblogentry-814-0-28806200-1379333603.jpg

    Sigillaria

    blogentry-814-0-43993100-1379333713.jpg

    Calamites (Calamostachys, Macrostachya, Asterophyllites)

    blogentry-814-0-19212400-1379333815.jpgblogentry-814-0-45951800-1379333819.jpgblogentry-814-0-94667800-1379333822.jpg

    Cordaicarpus (Cordaites seed)

    blogentry-814-0-67074000-1379333888.jpg

    Dicranophyllum

    blogentry-814-0-32663200-1379333932.jpg

    Jurassic (Bothonian) petwood

    blogentry-814-0-45801000-1379334110.jpg

    Euproops danae

    blogentry-814-0-48422700-1379333672.jpg

    Trigonia Myophorella

    blogentry-814-0-98021100-1379334050.jpg

    to be continued...

  5. Sigmund Freud theorized that the act of collecting ties back to the time of our toilet training. Freud suggested that the loss of control and what went down the toilet was a traumatic occurrence to us human and thus in our subconscious we develop the desire to collect things as a mean to try to gain back not only control but “possessions” of that which were lost so many years ago.......

    O.K. if I tried to rephrase what I just shared in a non-academic language is that we human collect because of the trauma we faced when we couldn’t control and keep our poo poo when we were toddlers - man that sounds pretty bizarre (in a funny and entertaining way - no disrespect to Mr. Freud) while at the same time stirred my brain into thinking really deep about the purpose, the psychology and even the philosophy behind our beloved hobbies of collecting, whether they be fossils, minerals, books, etc.

    Thus in this blog, I will attempt to share my thought and theories that are my own take on this particular subject. Though I will have to say in advance before you read that this is in no way an attempt to be academic in nature - just pure ramblings for the purpose of my own amusement and if it turns out to be enlightening then all the better! So here it goes:

    **switching on psychological rambling mode**

    My perspective and belief is that collecting is an act that is stemmed from our human nature’s instinct that reacts towards “Fear” and “Uncertainty”, and there are quite several motives and psychology behind collecting that I believe support this notion:

    Fear of Mortality

    A collector collects due to a deep rooted fear of mortality and whether if you will be remembered or leave legacy after you have passed away. We can observe collectors of this type who often will go on to donate collections to public institutions or create museums to exhibit their collections. We as human (at least I believe most of us are anyway) desire to be remembered in some ways and thus our collection or what we have contributed will leave a mark in history and in essence immortalize us with our legacy which is our collections.

    Fear of Being Alone

    Some collectors start collecting as a mean to seek company of like-minded individuals who share similar passions or to experience acceptance as be part of a unique society, group and culture; for we human are social animals that instinctively seek group safety and social belongings or we become lost and terrified. This motive therefore, is also based on our fear instinct that has been implanted in our psyche.

    Fear of Non-Existence

    I think it’s probably sensible to assume that we all collect in order to know more about ourselves or to remind us of who we are, our interests, our loves, our passions and our nostalgic pasts. Thus the motive of collecting from this perspective is related to our fear instinct. For to remind of ourselves is to reinforce ourselves that we exist while at the same time reminding us of moments of happiness that make us feel alive - and those moments for collectors are the times we interact with and make ourselves surrounded by the objects of our obsessions. In addition we could say that, the act of building a collection creates a type of blueprint of our inner psyche and of a person’s life through the objects the collector acquired and cherished - the experiences the collector went through in his life. Therefore, the act of collecting is the act of painting a portrait of our life stories and our souls, through objects that speak about our love and fascinations. It reinforces our identity, our memories and our existence.

    Fear of Uncertainty & Chaos

    Collecting as a mean to create meaning to an otherwise seemingly chaotic world. We as collectors collect by gathering groups of objects that form cohesiveness or relationship between the pieces or to tell a certain story behind those naturally unrelated pieces and thereby forming meaning to the collection. Some collectors form collection in response to certain problems or sense of wonder of the chaos presented in front, and by building a collection the collector is able to tackle that problem. For example, a collector might face the question of “How can I represent the diversity of the Eocene mega fauna of North America?” (problem / chaos) and thus the collector embarks on a collecting quest to gather specimens that would build a complete collection of Eocene North American mega fauna specimens collection (solution / order). The act of collecting creates a collection that in essence, becomes the solution to the collectors dilemma. This, I would also say that is part of our deep rooted human psyche of fear of chaos and the unknown, and thus our instinct is to try to limit the chaos by creating orders (or illusions of order) to an otherwise chaotic world (in our perception at least) much in the same ways as how the early humans banded together, formed groups and created cultures or rituals to face the world’s problems or threats. Collectors on the other hands, tackle the chaos by creating order in the collection and in so doing the collector gains a semblance of power and control over disorganization and chaos.

    Fear of the Absence of Aliveness

    Collecting is without a doubt, a pleasurable pursuit for collector, whereas an audiophile takes pleasure in listening to music, food connoisseur indulges in the enjoyment food & wine, or art aficionado indulge in art appreciation and possession. We collectors induce our senses of aesthetics and pleasure from acquiring and creating collections of objects in order to feel enjoyment. In a way, this could be viewed as related to our fear instinct because we fear to not being able to feel the pleasurable pursuits in life. For we human feel alive when we experience such pleasures, whether the pleasures be from the indulgence of consumable & wearable objects or simply to possess and be surrounded by the things that give us joy like our collections.

    Fear of Powerlessness

    Collecting can be viewed as an act that I think came from our hunting instinct - to explore our sense of wonder of the unknown, to challenge the goals of acquisitions of hard-to-find objects; this in my view is in essence “the thrill of the hunt”. This particular collecting mindset is also based on our response to our fear instinct for when we hunt, we transform ourselves from being powerless prey to being powerful hunter and dominators - thus hunting (or in essence collecting) is an act to overcome our fear instinct while the “hunting” and while at the same time the journey of the hunt makes us feel alive. Also, when thinking about this motive I think it makes sense as we tend to see many collectors tend to be drawn to fossils of creatures of great power and ferocity or majestic beauty. For some collectors to possess such specimens make the collectors feel the power of those long dead creatures probably in similar manners in how hunters have trophies of their hunt to show their skills as hunters to overcome such beasts.

    Now don’t these reasons and psychology of collecting sound much more appealing than Sigmund Freud’s potty training explanation? But, before some may think that “Collecting = Fear” may seem like a degrading notion at first glance, I present to you my next theory:

    **switching on philosophical rambling mode**

    Fear of Being just another Animal - Collecting to Transcend Humanity

    Despite our instinctual fear that drives us to collect, the act of collecting is also an act of human transcendence and transformation. Some collect objects of power to symbolize the attaining of that power or the conquering of such powerful force that ultimately makes us feel more powerful than who we are without the collection. An act of collecting transform us into more powerful being (whether physically, socially, economically or spiritually): a person with no social distinction or significance can become conservators, scholars and even admired icons of historical significance. Collecting can transform the powerless into the powerful, the ignorant into a scholar, a hoarder into a curator and in many cases, turning common man into sage.

    Our fear of mortality, uncertainty and instability of our universe makes us human so special and able to achieve our transcendence from mere creatures of survival instinct into creators, innovators, artists, philosophers or sages. Thus it is the shadow that allows us to appreciate the light; the fear of death that makes us cherish the beauty of life; the brutality of our darkest side that gives rise to the reactionary opposites that make us saints, protectors and self-less beings capable of great courage and heroism.

    Therefore, even if the psychology of collecting comes down to “Our Fear of Mortality” (death with no legacy or inability to feel “alive”), “Our Fear of Non-Existence” (due to the lack of social presence, acceptance or without a group to belong); that very fear creates motives for us to have “Desire for Transcendence” into something more than what we are. Thus I would make the case that the act of collecting is both instinctual (as a reaction to our deep rooted fear of mortality & physical existence) and spiritual (as a path [and an enjoyable one!] towards transcendence of the human existence).

    **switching off philosophical rambling mode**

    My goodness after I just wrote all that, I just had an idea that the next time, when I meet people who think my collecting and obsession with eclectic objects are weird, bizarre or non-sensual, I can start quoting my philosophical ramblings that my collecting hobby allows me to transcend spiritually and start going into Zen mode - that’s should be entertaining to say the least, lol. Who would have thought our hobbies could be so spiritually stimulating.

    Anyway that’s all for my rambling for today. Hope you enjoy the blog entry :)

  6. Dear Fossil Forum members!

    This report deals with ammonoids from the former zone of Protrachyceras archelaus, which is our present Longobardian within the Ladinian stage of the marine Triassic timescale.

    blogentry-2660-0-78726600-1392401266.jpg

    Fig.1

    A beautiful view of the surging “rock waves” of the incoming tectonic thrust sheets. The valley between the two Mountains in the middle of the picture marks the tectonic border between the mainly Triassic Hallstatt Unit and the Tirolikum Unit of the Totengebirgs nappe (in the background).

    History

    Since the beginning of the geological research within the Northern Calcareous Alps of Austria in the middle of the 19th century, about 500 species of Triassic ammonoids have been described in great Monographs by Mojsisovics, Hauer, Diener and other early authors. The ammonoids described therein came from upper Anisian to uppermost Norian aged parts of the Hallstatt limestone in Austria.

    Only in the lower to middle Ladinian period, a gap exists in the rich ammonoid record of these early researchers.

    This gap was explained by them as an interruption of sedimentation in the Ladinian time or tectonically reduced Ladinian strata during the genesis of the Alps.

    During these early days no one thought of a collecting gap because Ladinian ammonoid faunae were well described and known from several localities in the Southern Alps and the Bakony Mountains in Hungary.

    In 1882 Mojsisovics pictured ammonoids of Anisian and Ladinian age in his monographic work “Die Cephalopoden der mediterranen Triasprovinz”.

    The locations mentioned therein reach from the upper Anisian Schreyeralm limestone here in Austria to several Ladinian locations of the former Austrian provinces Südtirol, Lombardy and the kingdom of Hungary, which were also part of the former Austrian-Hungarian Monarchy at this time. Included in this work were also Scythian and Anisian ammonoids from Croatia and Bosnia-Herzegovina.

    blogentry-2660-0-36657800-1392409127.jpg

    Fig.2 Frontpage of Mojsisovics second great monograph from the year 1882.

    The detailed accurate descriptions and illustrations provided by Mojsisovics are unquestionably the greatest contribution by a single author towards appreciating the astonishing beauty and variety of Triassic ammonoids” (cit. E. T. TOZER).

    Therefore every recent Triassic ammonoid researcher includes these old works in the standard literature of Triassic ammonoids. These old works were so to speak, a cornerstone for building the marine middle and upper Triassic timescale of our days.

    Unfortunately the early stratigraphic scales of Mojsisovics had some mistakes. Originally the stratigraphic position of the “Norian” stage was set by him below the Carnian.

    He used the term Norian for the time frame we today call Ladinian. Mojs. thought that most parts of today’s real Norian Hallstatt limestone of Austria were of the same age as real Ladinian strata in the Southern Alps. Some misinterpret location data, i.e. the wrong assumed position of the fineclastic Zlambach marls as base of the Hallstatt limestone led him to this wrong assumption.

    It was the Austrian geologist Alexander Bittner, a contemporary of Mojsisovics, who introduced the term Ladinian into literature by recognizing the false assumptions of Mojsisovics. The name Ladinian was chosen by Bittner after the Ladinian folk of the Southern Alps/Dolomites. At this time this area was also part of the Austrian-Hungarian monarchy with its capital Vienna and it’s so called “Vienna school” of the palaeontology institutions there.

    Probably this “miss take” of Mojsisovics led to some changed ammonoid zones within the Norian timescale, which last into the 20th century.

    It was the merit of the Canadian Triassic worker E.T. Tozer to correct this long lasting error by establish his own North American Triassic timescale, based only on North American, mainly Canadian Triassic ammonoid locations.

    The pelagic (deeper marine) Triassic sedimentation in Austria starts with the uppermost Anisian Flexo-Ptychites beds/lenses of the Schreyeralm limestone. This is also the base of the Hallstatt formation. The next frequent ammonoid lenses/layers occur within uppermost Ladinian/lower Carnian strata in this formation. The lower to middle Ladinian time frame in between was not well documented with ammonoids by the early researchers of the 19th century. At some historical locations the lower Ladinian part is/was given but was not really recognised by them.

    Later, modern researchers used microfossils to determine the placement of large parts of the grey to violet limestone in the Hallstatt formation into the Ladinian. Within the 20th century also scarce ammonoids were mentioned from these middle Ladinian strata.

    blogentry-2660-0-45365900-1392401945.jpg

    Fig.3 Anisian Schreieralm limestone with cross sections of Flexoptychites sp.

    blogentry-2660-0-79443500-1392401397.jpg

    Fig.4 Monophyllites sphaerophyllus (HAUER) from the Schreieralm limestone

    In general, ammonoid locations are not frequently known within the Ladinian part of the Hallstatt limestone.

    The most common fossils are Crinoid stem parts, Bivalves and Conodonts.

    The limestone facies consists of red to grey, sometimes yellowish to grey coloured limestone which is locally interbedded with marls.

    Also strongly condensed successions are common there and fossils also do not occur in continuous layers.

    Comparable Ladinian ammonoid faunas are also well known from similar Hallstatt type limestone in Greece and Italy. They show similar ammonoid faunae of Ladinian to Carnian age.

    In the Tethys realm the whole Ladinium is split into two subdivisions today.

    Upper Ladinian = Longobardian,

    Lower Ladinian = Fassanian,

    The historical zone ammonite of the Longobardian is Protrachyceras archelaus (LAUBE).

    blogentry-2660-0-55213000-1392401415.jpg

    Fig.5

    Protrachyceras archelaus (LAUBE), in MOJSISOVICS “Die Cephalopoden der mediterranen Triasprovinz“ Wien 1882

    Tafel XXXL, Fig. 1,

    But Protrachyceras archelaus LAUBE do occur within a longer time span and is therefore not perfect for stratigraphic aims. The old archelaus zone of the Ladinian was therefore changed into several Longobardian and Fassanian ammonoid zones of today.

    Within the Tethys realm the Longobardian is split into the ammonoid zones of:

    Daxatina canadensis

    Frankites regoledanus

    Protrachyceras longobardicum

    The Fassanian is split to the ammonoid zones of:

    Eoprotrachyceras gredleri

    Protrachyceras margaritosum

    Eoprotrachyceras curionii

    The ammonoids shown in this report come from a condensed fossil bed roughly inserted to the turquoise marked ammonoid zones of the timescale below.

    blogentry-2660-0-84156700-1392409215.jpg

    Historical Ladinian locations

    The condensed lower Carnian fossil lenses on the famous historical Feuerkogel show almost all a portion of the upper Ladinian at their base. This is also visible at other Lower Carnian locations within the Hallstatt limestone.

    During the last years Proarcestes sp. from a new location are sometimes shown for sale in the internet. They are sometimes identified as Arcestes sp. from Norian strata. But it is Proarcestes, therefore its Norian age is definitely wrong.

    I visited this new locality a few years ago. All locations there are of Ladinian age which is evidenced by Proarcestes cf. subtridentinus, Anolcites sp. and Epigymnites sp. This fauna is maybe slightly younger than the fauna shown later here in this report.

    blogentry-2660-0-38160400-1392401441.jpg

    Fig.6 Some Epigymnites arthaberi (MOJS.) and Epigymnites moelleri (MOJS.) from the above mentioned location

    The new location

    Several years ago a friend and I were lucky to find a hitherto unknown middle Ladinian ammonoid location during a prospecting trip. At this location the normal limestone succession is penetrated by several fractures and tectonic influence across the normal layer direction is also visible there. The fossil layer itself, in which ammonoids were frequent, consists of a very strong condensed upper part of lower Longobardian age, indicated by Protrachyceras longobardicum (MOJS.), and a lower part of a slightly older age indicated by scarce last descendants of Ptychites cf. pauli MOJS. which show deeply incised second and third lateral saddles similar Aristoptychites or Arctoptychites.

    Therefore the location is ranged by me to the transition of the ammonoid zones of Protrachyceras longobardicum and the underlying Eoprotrachyceras gredleri zone. Outside of the Tethys realm this is roughly comparable to the zones of Meginoceras meginae MC LEARN and Tuchodiceras poseidon (TOZER) of the North American timescale. Both zones are known from the Triassic of British Columbia in Canada too. Tozer, 1994, wrote that flat forms of Protrachyceras sikianum MC LEARN are comparable with Protrachyceras longobardicum (MOJS.) and the thicker morphs of Pt. sikianum MC LEARN with Pt. archelaus (LAUBE).

    blogentry-2660-0-99674500-1392401455.jpg

    Fig.7

    View of the lower, sometimes more greyish limestone part of the fossil layer. The chisel points to a Sturia cf. semiarata MOJS.

    The furrows on the limestone block have their origin in the strong condensation of this limestone. One can recognize by this feature the underlying part of a condensed limestone (fossil) layer.

    blogentry-2660-0-89521100-1392401469.jpg

    Fig.8

    In contrast to the above shown picture, a view of the underside of the overlaying layer where craters/hollows are visible. These two features can be used for recognizing up and downside in strongly condensed limestone. This feature is independent from the Triassic age of the rock and occurs in condensed limestone of Jurassic age too.

    The right hanging limestone block contains the fossil layer.

    blogentry-2660-0-38766800-1392401489.jpg

    Fig.9

    Protrachyceras longobardicum (MOJS). in situ. View from the underside. The upper half of the ammonoid was totally dissolved due to the extreme condensation of the uppermost limestone layer at this location.

    In this location P. archelaus occurs very scarcely. It is no good indicator for stratigraphic aims here at all.

    A normal collector can use the following features to insert ammonoids into the Ladinian timescale.

    1. The frequent occurrence of Proarcestes sp. with a wavy end body chamber is a sign for Ladinian age.

    1. All forms of Sturia sp. are restricted to the late Anisian and Ladinian.

    1. The occurrence of real Ladinian Protrachyceras MOJS.

    The following picture will show you the main differences between Protrachyceras, Trachyceras and Neoprotrachyceras.

    blogentry-2660-0-90756000-1392403507.png

    Fig.10

    In contrast to Trachyceras the venter furrow of real Protrachyceras MOJS. is bordered by nodes which show a single point per node. Protrachyceras are restricted to the Ladinian.

    Real Trachyceras show “broader” nodes with two or three points a node bordering the venter furrow. Trachyceras is frequent in the Lower Carnian (Julian)

    The genus Neoprotrachyceras KRYSTYN looks similar toTrachyceras but shows also just one point per node, sometimes changing up to two points per node within maturity. Neoprotrachyceras is restricted to the uppermost Lower Carnian and lowermost Upper Carnian (e.g. the genus Spirogmoceras SILBERLING in the Dilleri Zone of the North American Tuvalian)

    For a newbie collector it is difficult to find some fossils in the Hallstatt limestone at all. To place them into the right ammonoid zone is sometimes the easier part of the exercise.

    blogentry-2660-0-54203100-1392401520.jpg

    Fig.11

    A weathered cross section of Proarcestes sp., visible at the limestone wall. Notice the bleached limestone surface in contrast to the colour of the fresh rock.

    blogentry-2660-0-92858800-1392401553.jpg

    Fig.12

    Talus block with visible cross sections of ammonoids and orthocone nautiloids

    Natural picture size is 20cm. The edges of the fossils are deeply weathered in. This can be a sign that the fossils will probably split out well.

    Small idiomorphic Biotite crystals up to one mm in size, fine Feldspar crystals and thin greenish tuffitic crusts around some ammonoids and limestone clasts indicate a distant simultaneous volcanic event, adjacent to the palaeo Hallstatt realm. This is the very first observation of volcanic fallout/washout within the Hallstatt limestone column.

    Within other tectonic nappes in the Northern and Southern Calcareous Alps (Dolomites) volcanic (Tuffitic) ash layers are a frequent feature in Ladinian time. In the adjacent Tirolic nappe some volcanic/tuffitic events are evidenced near the base of the archelaus zone.

    The middle Ladinian fauna listed below was found at this location.

    Ammonoidea

    cf. Beyrichites sp.

    Eupinacoceras cf. damesi (MOJSISOVICS).

    Epigymnites cf. ecki (MOJS.)

    Epigymnites cf. breunneri (HAUER)

    Epigymnites arthaberi (MOJS.)

    Gymnites raphaelis TOMMASI

    Megaphyllites obolus MOJS.

    Monophyllites wengensis (KLIPSTEIN)

    cf. Silenticeras sp.

    Sturia cf. sansovinii MOJS.

    Sturia semiarata MOJS.

    Proarcestes ombonii TOMMASI

    Proarcestes subtridentinus MOJS.

    Proarcestes .sp.

    Procladiscites sp.

    Protrachyceras archelaus (LAUBE)

    Protrachyceras longobardicum MOJS.

    Protrachyceras sp.

    Ptychites cf. pauli MOJS.

    Ptychites cf. plusiae RENZ

    Michelinoceras sp.

    Atractites sp.

    Syringoceras cf. longobardicus

    Nautilus div. sp.

    Bivalves

    Daonella sp.

    Peribositra sp.

    Brachiopoda:

    Discinisca sp.

    Austriellula dilatata (SUESS)

    Important ammonoid species of the archelaus zone

    A beautiful, conspicuous faunal element of the archelaus zone is Protrachyceras longobardicum MOJS. the zone ammonoid of the Langobardicum Zone

    This species shows its maximum roughly in the lower middle of the former archelaus zone and can be used well for stratigraphic aims. As mentioned earlier in this report compressed variants of Protrachyceras sikanianum MC LEARN are comparable to Pt. longobardicum MOJS. The thicker variants of Pt. sikanianum rather resemble Pt. archelaus LAUBE.

    blogentry-2660-0-07426300-1392401662.jpg

    Fig. 13 Protachyceras longobardicum MOJS. with Proarcestes ombonii TOMMASI and Proarcestes cf. subtridentinus MOJS.

    blogentry-2660-0-05340900-1392401683.jpg

    Fig. 14 Pt. cf. longobardicum, some juvenile Arcestes sp. and the brachiopod Austriellula dilatata.

    blogentry-2660-0-99868300-1392401698.jpg

    Fig. 15 Epigymnites breunneri (HAUER) and Monophyllites wengensis (KLIPSTEIN)

    blogentry-2660-0-95674300-1392401725.jpg

    Fig. 16 Epigymnites arthaberi MOJS. and Monophyllites wengensis (KLIPSTEIN)

    blogentry-2660-0-23959900-1392401749.jpg

    Fig. 17 Gymnites raphaelis TOMMASI

    blogentry-2660-0-86778400-1392401782.jpg

    Fig. 18Discinisca sp. Looks like a fossil Limpet gastropod (Patellidae) but in reality it is an inarticulate Brachiopoda

    blogentry-2660-0-70730000-1392401810.jpg

    Fig. 19Sturia cf. semiarata together with Proarcestes cf. ombonii

    The most frequent faunal element of the Ladinian within the Tethys realm is Proarcestes BRONN. This genus occurs with several species up to Carnian strata. In our location Proarcestes subtridentinus MOJS. and Proarcestes ombonii TOMMASI was often found. The second one can reach the dimension of a small ball.

    blogentry-2660-0-25316300-1392401831.jpg

    Fig. 20 Proarcestes subtridentinus

    blogentry-2660-0-26361900-1392401852.jpg

    Fig. 21 Monophyllites wengensis (KLIPSTEIN)

    In the Hallstatt limestone this genus starts with the Anisian Monophyllites sphaerophyllus via the Ladinian M. wengensis up to the Carnian M. simonyi. Within the descendants of the Triassic Phylloceratida the ancestor of the Jurassic Ammonitida is supposed.

    blogentry-2660-0-10182500-1392401883.jpg

    Fig. 22 Ptychites cf. pauli MOJS. This species of Ptychites show deeply incised second and third Lateral saddles. I think that this is a feature of allmost all "late" species of Ptychites.

    blogentry-2660-0-80698400-1392401907.jpg

    Fig. 23 Ptychites cf. plusiae RENZ

    blogentry-2660-0-49893600-1392401928.jpg

    Fig. 24 Sageceras walteri

    I hope you have enjoyed this new report about the Ladinian strata of my favourite collecting area.

    Again I thank, “Danke Roger”, Fossil forum member “Ludwigia” for correcting my “Austrian” English.

    Kind regards

    Andreas

    Literature:

    ALMA, F. H. (1926). Eine Fauna des Wettersteinkalkes bei Innsbruck. Annalen des Naturhistorischen Museums in Wien, 40, 111-129.

    BACHMANN, GH, JACOBSHAGEN, V (1974) Zur Fazies und Entstehung der Hallstätter Kalke von Epidauros (Anis bis Karn; Argolis, Griechenland). Z Deutsch Geol Ges, 125: 195-223

    DIENER, C. 1900: Die triadische Cephalopoden-Fauna der Schiechlinghöhe bei Hallstatt. Beiträge zur Paläontologie Österreich-Ungarns und des Orient 13

    v. HAUER, F. (1888). Die Cephalopoden des bosnischen Muschelkalkes von Han Bulog bei Sarajevo. KK Hof-und Staatsdruckerei.

    von Hauer, F. (1888. KK Hof-und Staatsdruckerei.

    KITTL, E., 1908, Beiträge zur Kenntnis der Triasbildungen der nordöstlichen

    Dobrudscha. Denkschriften der mathematisch-naturwissenschaftlichen Klasse der

    kaiserlichen: Akademie der Wissenschaften, v. 81, p. 445- 532

    KRISTAN-TOLLMANN, E, KRYSTYN, L (1975) Die Mikrofauna der ladinisch-karnischen Hallstätter Kalke von Sakliblei (Taurus-Gebirge, Türkei). Sitzungsber. Österr. Akad. Wiss. Math. Naturwiss. Kl. Abt. I, 184 (8-10): 259-340

    KRYSTYN, L. Zur Ammoniten und Conodonten-Stratigraphie der Hallstätter Obertrias(Salzkammergut, Österreich), Verh.Geol. B.-A., Wien 1973

    KRYSTYN, L (1983) The Epidauros Section (Greece) – a contribution to the conodont standard zonation of the Ladinian and Lower Carnian of the Tethys Realm. Schriftenreihe Erdwiss. Komm. Österr. Akad. Wiss., 5: 231-258.

    MOJSISOVICS, E. 1893: Die Cephalopoden der Hallstätter Kalke, Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, II Band, Wien 1893

    MOJSISOVICS, E. 1896: Beiträge zur Kenntniss der obertriadischen Cephalopoden Faunen des Himalaya, Denkschriften der Kaiserlichen Akademie der Wissenschaften

    Mathematisch–naturwissenschaftliche Classe, 63, 575–701. Wien 1896,

    TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin, 467, 1–663.

    MOJSISOVICS, E. V. 1879. Vorlaufige kurze Übersicht der Ammoniten-Gattungen

    der mediterranen und juvavischen Trias. Verhandlungen der kaiserlich-

    königlichen geologischen Reichsanstalt, 1879(7):133–143.

    MOJSISOVICS, E. V. 1882. Die Cephalopoden der mediterranen Triasprovinz.

    Abhandlungen der kaiserlich-königlischen geologischen Reichsanstalt, 10, 1–322.

    NITTEL, P. (2006) Geo Alp, Vol.3, S93-145, Beiträge zur Stratigraphie und Mikropaläontologie der Mitteltrias der Innsbrucker Nordkette(Nördliche Kalkalpen Austria)

    PISTOTNIK, U. 1973-74 Fazies und Tektonik der Hallstätter Zone

    von Bad Ischl — Bad Aussee (Salzkammergut, Österreich)

    RENZ, C. – 1931 Die Bulogkalke der Insel Hydra, Ostpeloponnes

    RENZ, C. (1910): Die mesozoischen Faunen Griechenlands I. Die triadischen Faunen der Argolis, Palaeontographica 58, S. 1-103, Tab. 1-7, Fig. 15

    RENZ, C. Neue griechische Trias Ammoniten aus den Verhandlungen der

    Naturforschenden Ges. Basel. S. 218- 255, Tab. 6-8, Abb. l, Basel.

    SALOPEK M. 1911,Über die Cephalopoden der mittleren Trias von Süddalmatien und Montenegro, Abhandlungen der .k.k geol. Reichsanstalt, Band 16, Heft 3

    WEITSCHAT, W. & LEHMANN, U. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella Shales) of Spitsbergen

    With plates 1-6, 2 tables and 9 text-figures Mitt. Geol.-PaläonInst. Univ. Hamburg. Heft 54, S. 27-54

    WENDT, J. (1970) Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys. N. Jb. Geol. Paläont. Mh., 1970/7: 433-448

  7. Terry Dactyll's Blog

    • 3
      entries
    • 15
      comments
    • 6680
      views

    Recent Entries

    Terry Dactyll
    Latest Entry

    Ive finally cracked it...... These have been sat on the beach for hundreds of years in some cases slowley eroding away, with the beach situated amongst the most dense consentration of commercially minded collectors in the country.... The only reasons I can think of that they sat there and wernt picked up is either they are too difficult or time consuming to prep and because of this they would get very little for their efforts in finacial return..... Its the only plausable explanation....to do what I do you have to love em..... you have to forget money...if your worried about your time and money, you dont enjoy there sheer size, the magic of uncovering the past, grain by grain as you preogress..... some people would find it boring..... but to be honest, I cant get enough...... I knew it looked different from the start.... the rock it was in felt different, the texture, it was more fibrous... the way it behaved under stress...... a short prep time of probably only 28 hours or so..... which is pretty good for one of these.... sometimes if you get the ammonite shell sat on a bed of shells, the limestone cements like concrete and its more a battle of whits and patience that gets you the result.... fortunately this one played the game..... Ive struggled myself with the ID and its only when you put it amongst the others you can see the not so subtle differences to the 'usual' Coroniceras you find on this beach..... the ribs are more straight, the curvature in the shell is more apparent ( I dont know the 'technical terms' lol...I walk the walk not talk the talk).....and the colours of the very fine calcification is quite different as well in some places almost see through and less than a mm thick..... so i have had to go easy on the sanding down of this one.....after chewing over what it could be, half prepped I gave up and consulted a good friend of mine who pointed me to the right fossil once we could see the wood from the trees.... Its a new on for my collection :D , which is always a buzz.....

    Arietites(Paracoroniceras)oblongaries Lyme Regis Lower Jurassic Sinemurian

    blogentry-1630-1256285878115.jpg blogentry-1630-12562859419181.jpg

    blogentry-1630-12562859112531.jpg

  8. Diatoms are monocellular organisms which contain chlorophyll, and manufacture their own food in the same manner as plants, through the process of photosynthesis.  They are one of the major producers of the Earth's oxygen.  Their long geological history makes them very useful in the correlation of sedimentary rocks, and they are of equal value in reconstructing paleoenvironments.  They are remarkably common everywhere there is any water at all!  I have studied fossil marine diatoms for many years, as they are my primary interest in the microfossil world.  Many of them are quite beautiful, and they are a favorite subject with many persons who enjoy photomicrography.  My primary interest is in diatom taxonomy and evolution, not photography, so I'm afraid my images don't really do them justice.  Centric diatoms exhibit radial symmetry, from circular to triangular, and all points between.  Oval shapes are not uncommon.

     

    Az_morenoensis.jpgP_fausta.jpg

     

    The oldest specimens of essentially modern diatom types are from the Cretaceous, and one of the very best localities is the Moreno Shale, which crops out in the Panoche Hills of California.  Many diatomists have worked on this flora, and it is fairly well understood.  Here we see two of the common taxa from this source.  (The bar across the top of the Azpeitiopsis is a sponge spicule, not part of the diatom!)  Diatom frustules are composed of secreted silica -- hence they are brittle, but can be virtually indestructible by chemical or diagenetic change in the right sort of environment.  (One exception is a highly alkaline environment, which corrodes and ultimately dissolves biogenetic silica.)  Other siliceous microfossils include some types of sponge spicules, silicoflagellates (another blog entry coming up perhaps), radiolarians, and ebrideans.  At least one family of the foraminifera uses siliceous cement to form their tests.

     

    Diatom floras changed radically across the KT boundary, but they are still abundant in the Paleocene.  Arguably the world's most famous locality for fossil diatoms is the region around Oamaru, New Zealand, and all collectors have many specimens from there.  The age is Late Eocene - Early Oligocene.  Somewhat earlier are the many great localities in Russia.  Here is a Paleocene specimen from Simbirsk, Ulyanovskaya, Russia.  Note that it deviates from pure centric form in that it is slightly ovoid.

     

    R_oamaruensis.jpg

     

    My own specialty is the diatoms of the Miocene.  The United States is blessed with superb Miocene localities on both coasts, many well-known to members of this forum, because most of them can also produce superb shark teeth.  The earliest known Miocene flora in the US comes from sites in Maryland: near Dunkirk, Nottingham, and other lesser known localities along the Patuxent River.  All of these sites began to be explored in the mid-19th Century, because the diatoms are so perfectly preserved, to say nothing of abundant!  These sites are in the lowest part of the Calvert Formation; indeed, there is an unconformity above them that lasted for a considerable period of time, and the diatom flora exhibits considerable changes across it.  This part of the Miocene section belongs to the Burdigalian Stage, and age-equivalent diatoms are found also in bore holes and artesian wells at Atlantic City, New Jersey.  An index fossil for the East Coast Burdigalian is the following taxon:

     

    A_heliopelta.jpg

     

    This species of Actinoptychus evolved relatively quickly, and became extinct at the end of the Burdigalian.  It is remarkably beautiful under the microscope, especially in color images, as fine structures in the silica serve as diffraction gratings.  I regret that I have no color image in my photo library: I need to make a few!  The Calvert Cliffs are rich in fossil diatoms, also, from the later, Middle Miocene.

     

    C_coscinodiscus.jpg

     

    The above is but one example of the many marvelous specimens that can be found in the Calvert.  If you're walking the beach for shark teeth, and have access to a microscope such as that used in microbiology or pathology labs, or even the type used in high school biology labs, grab a sample of the sediment.  Soak it in water until it disaggregates into mud, let it settle until the water is just a bit cloudy, and put a drop on a microscope slide with a coverslip.  A magnification of 100X should reveal diatom frustules (or fragments thereof) among the remaining, unsettled particles of silt.  Diatomists all have their own protocols to get such specimens almost perfectly clean, and permanent slides made with a mountant of high refractive index can be utterly gorgeous.

     

    I am currently working most intensely on samples from the somewhat later Choptank Formation, that outcrops at Richmond, Virginia.  This is another locality that produces excellent specimens:

     

    A_senarius_N.jpg

     

    This is one of the most enduring taxa in the geological record, appearing from the early Paleogene right up until the present day, and it can be very abundant.

     

    T_condecorum.jpg

     

    A common triangular form.  There are many genera of triangular centric diatoms.  And other radial shapes are possible, too:

     

    T_pentacrinus.jpg

     

    So far as I am aware, this unique specimen is the earliest known example of this taxon, which is still found today in tropical waters.  The breakage in the top "arm" is unfortunate, but what can I say: the specimen is, thus far, unique.  One might expect modern contamination of the sample, were it not for the fact that the Richmond localities occur far from the contemporary ocean coast -- they are not "watered" by modern waves!

     


    That's it -- the 3.95 MB limit..............................

     

     

     

  9. emmytee
    Latest Entry

    That's right, I'm back. I'm sorry I didn't update as much as I should have. I was very busy with exams and essays (but it paid off, I made the Dean's List woo!) and then on break I just wanted to chillax and never write again.

    So... where did we leave off?

    I went on a field trip with my class to Portland Point. It was very rewarding. I found tons of brachiopods and some crinoid and trilobite material. My finds include a small, orange colored crinoid, and a near complete trilobite that's partially rolled. I wish I could include pictures but the fossils are currently at home.

    The internship continued as usual no new developments really, and I got an A in my fossil prep class. I wish I could go back and continue working on the fish but the prep lab is closed because it will be renovated starting February.

    So where does that leave me? I received an offer from the Volunteer Coordinator to serve as an intern to the Museum Operations and Programs Coordinator. In this job I would serve as a tour guide as well as assist the Coordinator in organizing programs and events. I accepted because I feel that I would gain more experience than just doing busy work in collections which is important because I am considering working at a museum in the future. And, I can still appreciate the museum's specimens as a docent. I will still update the blog with fun facts I learn from tour guide training and with my experiences serving as an intern. I have found out how to get college credit for the internship so although it's too late to get credit for last semester, this semester I can focus more on my internship by not taking as many classes.

    I'm already thinking about summer and whereI should work. I found a dream job out west for which I am adequately qualified but it's way too far away for my first summer in college. There's always next year! Instead, I am hoping to work at my local conservation center and museum but I would need to find and apply for a grant to get paid. I can't survive sophomore year unless I get a summer job! If all else fails, I can be a camp counselor again. Fun, but not relevant to my scientific interests.

    This semester I am taking Evolution and Diversity, Ecology and the Environment, Evolution of the Earth and Life, and Statistics.

    I'm sorry I left unannounced! I'll try not to let it happen again. I start next week :)

    Until then,

    Emily

  10. Stocksdale's Blog

    • 1
      entry
    • 6
      comments
    • 505
      views

    Recent Entries

    Alethopteris are quite common at Saint Clair location. But apparently there are at least 6 different species.

    These are all from "Fossil Plants from the Anthracite Coal Fields of Eastern Pennsylvania."

    A zip file that contains the PDF can be downloaded from http://www.dcnr.state.pa.us.

    Here's a direct link.http://www.dcnr.stat...dcnr_016425.zip

    Alethopteris ambigua

    blogentry-10955-0-06411000-1421676866.jpg

    Alethopteris decurrens

    blogentry-10955-0-24624200-1421676889.jpgblogentry-10955-0-16623000-1421676892.jpg

    Alethopteris friedelii

    blogentry-10955-0-37056100-1421676931.jpgblogentry-10955-0-57187600-1421676933.jpg

    Alethopteris lonchitica

    blogentry-10955-0-34393300-1421676953.jpgblogentry-10955-0-77401700-1421676955.jpgblogentry-10955-0-54021900-1421676958.jpg

    Alethopteris serlii

    blogentry-10955-0-95089200-1421676981.jpgblogentry-10955-0-16989000-1421676984.jpgblogentry-10955-0-86968800-1421676989.jpgblogentry-10955-0-36892500-1421676992.jpgblogentry-10955-0-25977900-1421676995.jpg

    Alethopteris sullivantii

    blogentry-10955-0-47437500-1421677037.jpgblogentry-10955-0-57185700-1421677042.jpg

  11. the pterosaurs saw what happened that day

    a second Sun dropped from the sky

    the pressure wave blasted those closest to haze

    and wafted their ashes on high

    then hundreds more pterosaurs lifeless and torn

    took flight in a terrible dance

    broken umbrellas tossed far by the storm

    untethered kites left to mischance

    thousands of pterosaurs fell like dead leaves

    caught up in sudden tumultuous seas

    waves smashed the pterosaurs huddled on land

    waves buried eggs under layers of sand

    the dark with mercy tried to hide these ravages in night

    receding waters banked the once majestic bodies high

    and now at last as all the worlds great forests come alight

    they are transformed

    as cinders reborn

    they take their final flight

  12. jesus' Blog

    • 1
      entry
    • 10
      comments
    • 3782
      views

    Recent Entries

  13. Pondering on Dinosaurs

    • 1
      entry
    • 0
      comments
    • 2087
      views

    Recent Entries

    blog-0886810001462177265.png

    Welcome to the first entry of my dino blog! I figured for the first entry I should do something exciting and personal to me, so I'm doing a face-off between my two favourite dinosaurs: masiakasaurus and noasaurus! These two dinos are roughly the same size and are the two smallest abelisaurids found so far. Before we get into the match-up, lets look at some stats and figures for the reptiles themselves.

    First off we have masiakasaurus, a piscivorous dinosaur with long, outward jutting teeth designed to capture and make sure any fish caught can't escape. Its arms had to be strong in order for it to hold on to its wriggling and squirming prey, and it's fingers end with hooked claws that would latch onto any fish snatched from the riverbank. It was 5.6 feet long (2 metres) and definitely is a strong and deadly competitor.

    Now we have noasaurus, an abelisaurid that closely resembles the maniraptorans, for the killing claw on nova's hands was originally thought to be based on it's foot, like a raptor. Noasaurus was an active hunter and could reach blisteringly fast speeds, presumably using similar hunting techniques to deinonychus and velociraptor- going for the soft, fleshy part throat of the animal. This abelisaur was 7.9 feet long (2.6 metres) and will definitely prove more than a match for masiakasaurus.

    THE FIGHT:

    This fight would probably only happen if noasaurus' hunting grounds started to clash with the section of the river masiakasaurus hunts by. As rivers generate a large amount of noise, noasaurus would definitely gain the advantage as it snuck up on masiaka, who would be facing the river, searching for prey. Noasaurus' first move would presumably to lunge from behind onto masiakasaurus' neck, attempting to get a killing strike in with the claw on it's hand. This move would likely push them both into the river (dinosaurs are pretty dumb, so noasaurus wouldn't have planned for that to happen!) where masiakasaurus would gain the advantage. It's outward jutting teeth would have to be strong to hold staring and thrashing prey, but they just weren't suited for attacking other dinosaurs. The hooked talons on it's hands, however... As masiakasaurus lacks hunting and attacking instinct, it would probably throw some wild slashes at the lightly built noasaurus, who would be struggling to keep it's snout above the water. Masiakasaurus would probably have experience from falling in to it's hunting grounds, and so would be prepared to get out. And as masiakasaurus would escape the confines of the water, the blood and gashes from the battle would attract some other aspiring aquatic predators. The poor, drowning noasaurus would presumably be finished by a crocodile of some sort or, once it drowned, scavenged by some smaller, predatory fish. So, in the end... MASIAKASAURUS WINS!

  14. Nicholas' Blog

    Well as the fist quarter of this University year closed last week, I'm definitely feeling that my ultimate career choice is Anthropology, and more specifically Paleoanthpology. I'm currently in a course which is all about Human Evolution, and it definitely my favorite course I've ever taken. It is really a great relief to finally read text books which are actually about the field which captures one's ultimate interest, and in the same breathe it is a relief to finally know that I'm going to feel comfortable making this field a career choice.

    The beginning of the course was primarily about where Homo sapiens fall into an evolutionary linage, showcasing what it means to be mammal, primate, and finally us. A great deal of time is being spent on Hominidae, since this is the family we belong and where our closest living relatives also reside. Out of these relatives I've been finding the Chimpanzee and Bonobo to be very interesting to learn about. I used to be quite ignorant to Primatology, I felt this was zoology and definitely had no merit calling itself Anthropology. This was completely incorrect and very Anthropocentric of me, a flaw which could have been fatal to my career choice if I had not realized it at this point. I now know understand that just because we're different does not give me any reason to ignore to huge amount of similarities. There were things that that non-human primates are capable of which is simply so mind boggling that I can't imagine why it isn't off hand common knowledge.

    Primatology is quickly becoming a second interest of mine and although it really isn't at the core of what I want to study professionally it will always be something I keep up to date on as a hobby and background for possible consolidating points of interest. A few things which I found extremely interesting that I feel is worth mentioning is the extent for learning in primates. Some short notes of interests of mine that others may enjoy looking up:

    - The ability for primates to associate the meaning with different calls, and respond to meaning as a learned process rather than instinctual.

    - Bipedalism in the Chimpanzee and Bonobo.

    - The concept of self and other in the great apes.

    - Tool making by non human primates, I found this to be the most interesting of all.

    Although we haven't reached the extinct forms of the Homo genus, I've read a head quite a bit and every single word of the text is interesting. I'm at the point where I would spend a life time learning about this field without a single moment of boredom. I'm very excited to hear the up coming lectures on the Homo genus, and even more excited on where this is going to take my fossil learning experience. I've already been dreaming of traveling to see famous specimens...

    I'm exactly where I want to be, and loving it. ;)

  15. Deep-Thinker's Blog

    • 1
      entry
    • 0
      comments
    • 3583
      views

    Recent Entries

    At over 60 feet in length and weighing over 50 tons, C. megalodon was without a doubt one of the largest and most terrifying predators to ever exist.

    It was literally,

    The Apex Predator, The Top of the Food Chain.

    Megalodon sharks lived from about 25 million years ago to around 1.5 million years ago. Megalodons had enormous teeth that grew up to seven inches in length. These razor sharp teeth were used to attack and devour ancient whales. In general, all shark teeth are highly evolved, being perfectly adapted for the shark's prey. Because Megalodon preyed upon whales, their teeth were massive and sharply serrated like a steak knife - an adaption which allowed them to easily cut through the meat and bones of giant whales.

    A team of scientists led by Stephen Wroe conducted an experiment in 2008 to determine the bite force of the C. megalodon and concluded that very large specimens were capable of exerting a bite force of up to 40,131 pounds per square inch (over 5 times greater than that of T. Rex), arguably making the giant shark one of the most formidable and powerful predators to have ever inhabited the oceans.

    Megalodon teeth were also extremely robust and solid allowing them to bite into whale bone without breaking. During their lives, Megalodons had teeth that were a bright ivory white color just like our teeth. Fossil Meg teeth however come in a variety of beautiful colors. Over millions of years of fossilization, the white enamel becomes mineralized, taking on the characteristic colors of the minerals surrounding it. By far the most common color is a dark grey color typical of teeth found in South Carolina rivers and some other Southern areas of the United States. Rarer colors include Reds, Blues, Greens, Yellows, Oranges, Black and combinations of these colors. Ivory colored Megalodon teeth typically come from phospate deposits, while other colors are usually found in Rivers. The more unusually colored teeth are much rarer and command significantly higher prices than the more common colors. Also, because high quality teeth over six inches in length are both rare and in high demand, these monster teeth command much higher prices than their smaller cousins. In fact Meg teeth over 5 inches in length tend to increase exponentially in price with increasing size.

  16. VisionXray23's Blog

    • 2
      entries
    • 12
      comments
    • 6207
      views

    Recent Entries

    I just filmed and posted a new youtube video. I would love to hear what you guys think about it !

  17. Lise MacFadden's Poetry Blog

    • 1
      entry
    • 1
      comment
    • 3458
      views

    Recent Entries

    For millions of years and then some

    I've waited for someone to come

    Even though I am dead

    and I'm missing my head

    I still have my pygidium

  18. Seldom's Blog

    • 3
      entries
    • 4
      comments
    • 3370
      views

    Recent Entries

    While David was here we got to spend a couple hours at the east end flats no great finds but we did find a place where the Beaumont formation was exposed. This is the first time I have seen it on the east end so am excited about what might be found in the lagoon. Going to have to wait till I recover from this knee thing but will be getting muddy soon. Also found a place where the dredge dumped fill from the channel in 1970. Its on government land and controlled by the COE so don't know how that's going to work out.

    All I know is if there are any fossils on the island I am going to find them I hope.

    Lance Roz and MikeD have shared info on the BF but if anyone has pictures of finds they would like to share that would be cool.

    More Later

    Seldom

  19. Digging America

    • 2
      entries
    • 1
      comment
    • 4865
      views

    Recent Entries

    Well now I can say that I have been into fossils since the 2010 aurora fossil festival and do not see myself getting out of anytime soon. I am still hunting the infamouns Green Mill Run and a few sites along the Tar and Neuse rivers. Having so much sucess at GMR I do not want to leave, I was once told if a spot is producing dont leave that spot stay in it until it quits, well almost 4 weeks into GMR and its still giving me a few nice size teeth ever so often I am not planning on leaving.

    Yesterday was the best day that I have had, I took both my father in law and brother in law that sift the spoil piles in Aurora alot to GMR for a different kind of hunting the 1st few hours in I dont think that were liking it to much b/c all they were seeing was 1/2 teeth and bones, but then I had an idea. I said lets dig over there, I will dig and you can sift well my 50 year old father in law liked that idea, I think he just wanted to see me work my A$$ off,lol. Well all of a sudden alot of big bone started comeing out of the hole, and I told him usally from my past experiences when you start seeing alot of big bone like that teeth are sure to follow. Well sure enough all of a sudden a perfect 3" meg comes up in the shovel, his exact words and I quote were " snarge let me do some digging, I have never found one that big" Well in my head I was thinking you didnt find it, I did the digging all you did was sift. But I didnt say anything, and he stuck it in his pocket, another 15 min in and out comes another this time the best GW that I have ever seen, a perfecy 2 3/4". I grabbed that sucker and stuck it in my pocket real quick.

    He took over and dug for a little while pulling nice 1 1/2" to 1 5/8" GW and megs out of that hole, when he said that he back was starting to hurt, it was time for him to leave and go to the house along with my brother in law. They left with around 300 teeth ranging from 1" to my nice 3" meg. Well still in discuss that he took my tooth I stayed a little while longer, not finding much and extremly tired of digging since 7 am and its was now 6:30 pm I decided to head back to the truck, I picked up the phone and called the wife to tell here about the day that we had and about my big tooth that I "gave" away, she said "I know my dad has already called and told me that you gave a big tooth" "he said that he was very happy and that he enjoyed his time with you, and wished that my brother would spend time like that with him" Well when she said that I felt bad about thinking bad about the old man, and decided to call him myself, when I did I got so many thank yous and he wanted to know when we were going to go again.

    This made me feel very good inside as the man that I thought hated my guts for the past 9 years actually enjoyed his time with me and wanted to spend more time. So I guess we should all think before we act.

    Matt J.

    "

  20. TyrannosaurusRex's Facts

    • 1
      entry
    • 11
      comments
    • 6036
      views

    Recent Entries

    An enormous bipedal dinosaur believed to be able to run up to 25 mph. Sue was the largest specimen ever found measuring 40 feet long and standing 13 feet tall. She was 28 years old when she died of unknown causes possibly an injury to her leg causing her to be unable to hunt her normal prey. Tyrannosaur weighed about 9 tons. While not as long as some of the other carnivores of its time Tyrannosaurus was a dangerous beast although some believed it to be a scavenger. They lived in North America from the Dakotas to New Mexico.

    It was believed to have had feathers as a chick

    blogentry-13624-0-60834000-1422935470.png

    A braincase of an adult specimen. It had a large section in its brain devoted to strategy

    blogentry-13624-0-19012900-1422935483.jpg

    The growth rate of an average Tyrannosaurus Rex

    blogentry-13624-0-89699900-1422935496.png

    Adult skull and the skull of an 11 year old juvenile

    blogentry-13624-0-00424800-1422935519.jpg

    A track believed to be Tyrannosaurus

    blogentry-13624-0-99912900-1422935532.jpg

  21. Traviscounty's Blog

    • 2
      entries
    • 0
      comments
    • 3449
      views

    Recent Entries

    I took my next door neighbor on a small fossil hunt under the freeway near my house. It's a pretty large creek, and since we haven't had any rain, it didn't stink. Found a couple of shell impressions and possible scraper. When it rains, I'm gonna check it out a little more aggressively. I think there might be some artifacts.

  22. jax world

    • 5
      entries
    • 0
      comments
    • 4052
      views

    Recent Entries

    jax
    Latest Entry

    I added a Gallery today. Im not sure why it took me this long to start one, but its up now. Now I can keep track of my better finds, and not loose the pics!

  23. michigantim's Blog

    • 1
      entry
    • 8
      comments
    • 5272
      views

    Recent Entries

    Sometimes the region I live in has the feeling of being a bit of a backwater. We're far removed from the metro and interstate action. So, just in case you have no idea what or where Michigan's NW LP is (Northwest Lower Peninsula), here's a view of the entire region:

    blogentry-2436-12730621593904.jpg

    Essentially, the whole place is a giant glaciated gravel pit.

    Up in the northern 1/3rd of this "mitt" there are low ledges of bedrock exposed on the shores of Lake Michigan, as well on the Islands from South Fox on up, and there are several quarries operating in the area, but otherwise everything is covered in sand and rounded rocks. The formations in the northern 3rd are: the Gravel Point, Charlevoix, and Petosky Limestones; Norwood, Antrim, Jordan River Shales, and remnants of the Whiskey Creek Formation, all Devonian, in the Little Traverse Bay region. The Upper Silurian (Bass Island) crops out at the northern tip of the peninsula, and on the islands immediately to the west. Further north, on the Upper Peninsula, is the rest of the Silurian and the Ordovician.

    After growing up in Missouri, where you can't walk a creek bed without finding fossils, Michigan seemed a bit of a fossil let-down. My folk's moved up here in the fall of 1985. We had been taking family vacations in the area for 10 years, escaping the July heat and humidity of St. Louis, MO., and my parents wanted a "change of lifestyle." Fortunately for me and my habitual rock hounding, they moved right next to an old and deep gravel pit.

    Back then, seeing nothing but gravel and boulders, I didn't think there would be too much to interest me. Brachiopods were obvious, and there was plenty of glacialized coral, Petosky Stones (a Hexagonaria coral), favosites, and chain corals to be found, some of them interestingly preserved, and of course all the igneous rock you wanted -- pink and red granites stippled with green veins, jasper, agates, basalts, feldspar; more than I can identify. Stuff worth hunting for, but 2 or 3 walks a year was plenty.

    As any seasoned fossil hunter knows, looks can be deceiving. After several years of being extremely busy and not really having the time to hunt properly, I finally do. Add to that the daily injections of inspiration I get from The Fossil Forum, and the 2 to 3 times per year walks have turned into 2 to 3 times per week.

    The Goodies are coming in fast, and with a fair amount of surprising diversity.

    It's amazing what you can find if you just spend the time to really look.

    blogentry-2436-1273319166007.jpg

    And, the more I look, the more questions I have regarding the original source of the fossils I'm finding, the influence and affect of the glaciers on the geology; the timing of their advance, how many advances there have been, their direction of movement, and the relative distances that they have moved rock, or when particular types of rock have been moved. How abundant is a type of rock in one area as compared to another across the North/South and East/West axis? Can "banding" of deposits be discerned to target particular types of fossils? Are any of the original sources for the fossil bearing boulders still present? If not, can one tentatively assign a rock to a formation/geologic era using fossils for correlation?

    I intend to use this blog as a platform for exploring these questions and others that arise, what I learn, and as well as for sharing my finds.

    Here's a map from Google Earth showing the pit closest to me, which I'll refer to as the Lincoln Rd. Pit; our greenhouses are in the upper left corner. You can see how short the walk is. Perfect for quick after work boulder smashing. The field to the west is our neighbor's. An ex-MSU extension agent. I think he plows it up just because he's bored, but the field is loaded with stone.

    blogentry-2436-12722015794914.jpg

    Wider view of the same area. Lincoln Rd. Pit is circled in yellow. To the west of the main pit, is a larger inactive pit, circled in black. Hunting there is a little sparser, but I'll hit it a few times a year. Greenhouses are circled in green. Due north of the greenhouses are two abandoned pits circled in black. One is on my dad's property, the other is private, but un-posted. The third, larger black circle to the north is the Benzie Co. Road Commission's gravel pit, dug into the north flank of Eden Hill, with no deep pit dug. Including the yearly plowed field, that's six spots to hunt in a 2 mile radius.

    blogentry-2436-12733205592657.jpg

    A view of the big ridge, Eden Hill, running NW - SE. Crystal Lake and the Betsie River Watershed is to the south, Platte Lakes & river watershed to the north. The big road that loops through the lower left is US31. Gravel pits/greenhouse in the center, circled in black.

    blogentry-2436-12733205124876.jpg

    And a full view of the general region, aka: Grand Traverse Region, named for the big double bay between the Leelanau and Old Mission Peninsulas. Leelanau Peninsula on the west. Sleeping Bear National Lakeshore runs from the middle of Benzie Co., north into the middle of Leelanau Co.

    blogentry-2436-12733205306123.jpg

    That's all for now.

    Thanks for taking the time to check out my blog,

    Tim

  24. trilobite guy's Blog

    • 2
      entries
    • 6
      comments
    • 5117
      views

    Recent Entries

    well i just got back from the museum and got lotsa stuff :P all invertabrates except some shark teeth. it was a great time, though i didnt have time to see all the galleries..well here are some pictures,

    first the museum

    blogentry-3994-057569800 1287936981.jpg

    now the fossils

    bryozoans and corals

    blogentry-3994-038570800 1287937113.jpg

    belemnites

    blogentry-3994-020630300 1287937184.jpg

    crinoid stem peice

    blogentry-3994-072545900 1287937243.jpg

    ammonites

    blogentry-3994-078513400 1287937305.jpg

    gastropod

    blogentry-3994-075812400 1287937360.jpg

    and then some shark teeth-i think its 3 tigers and 1 bull

    blogentry-3994-070645100 1287937492.jpg

  25. Piranha Blog

    • 1
      entry
    • 4
      comments
    • 5729
      views

    Recent Entries

    piranha
    Latest Entry

    Charles Darwin with his elegant theory,

    Met the burden of proof with those sneery,

    One-hundred-fifty years later,

    There is no idea greater,

    In advance he would have felt cheery !!

     

    Trilobites appeared with complexity,

    Still viewed to this day with perplexity,

    They are fun at this forum,

    And deserve our decorum,

    Tens of thousands of species collectively !!

     

    Tiktaalik arose from the sea,

    Stood so tall spectacularly,

    Fins like our hands,

    To conquer the lands,

    A fantastical family tree !!

     

    While Ida was swinging in trees,

    Never thought of being marquee,

    Now hotly debated,

    The evidence weighted,

    Awaiting her next show for TeeVee !!

     

    Fossil shark teeth are quite the rage,

    From Paleozoic to Pleistocene Age,

    The forms are so graceful,

    This forum is faithful,

    All others are always upstaged !!

     

    T.rex had a monstrous bite,

    Gave all the Trikes a big fright,

    Although taking a horn,

    Would be quite a thorn,

    Like any smart bird he took flight !!

     

    Fossil limericks are always such fun,

    No way I would only make one,

    A vast inventory,

    Treasures mined in a quarry,

    The magnificent tales are all spun !!

     

     

×