Jump to content

Search the Community

Showing results for tags 'Germany'.

  • Search By Tags

    Type tags separated by commas.
    Tags should be keywords or key phrases. e.g. otodus, megalodon, shark tooth, miocene, bone valley formation, usa, florida.
  • Search By Author

Content Type


Forums

  • Fossil Discussion
    • Fossil ID
    • Fossil Hunting Trips
    • General Fossil Discussion
    • Partners in Paleontology - Member Contributions to Science
    • Fossil of the Month
    • Questions & Answers
    • Member Collections
    • A Trip to the Museum
    • Paleo Re-creations
    • Collecting Gear
    • Fossil Preparation
    • Is It Real? How to Recognize Fossil Fabrications
    • Member-to-Member Fossil Trades
    • Fossil News
  • Community News
    • Member Introductions
    • Member of the Month
    • Members' News & Diversions
  • General Category
    • Rocks & Minerals
    • Geology

Categories

  • Annelids
  • Arthropods
    • Crustaceans
    • Insects
    • Trilobites
    • Other Arthropods
  • Brachiopods
  • Cnidarians (Corals, Jellyfish, Conulariids )
    • Corals
    • Jellyfish, Conulariids, etc.
  • Echinoderms
    • Crinoids & Blastoids
    • Echinoids
    • Other Echinoderms
    • Starfish and Brittlestars
  • Forams
  • Graptolites
  • Molluscs
    • Bivalves
    • Cephalopods (Ammonites, Belemnites, Nautiloids)
    • Gastropods
    • Other Molluscs
  • Sponges
  • Bryozoans
  • Other Invertebrates
  • Ichnofossils
  • Plants
  • Chordata
    • Amphibians & Reptiles
    • Birds
    • Dinosaurs
    • Fishes
    • Mammals
    • Sharks & Rays
    • Other Chordates
  • *Pseudofossils ( Inorganic objects , markings, or impressions that resemble fossils.)

Blogs

  • Anson's Blog
  • Mudding Around
  • Nicholas' Blog
  • dinosaur50's Blog
  • Traviscounty's Blog
  • Seldom's Blog
  • tracer's tidbits
  • Sacredsin's Blog
  • fossilfacetheprospector's Blog
  • jax world
  • echinoman's Blog
  • Ammonoidea
  • Traviscounty's Blog
  • brsr0131's Blog
  • brsr0131's Blog
  • Adventures with a Paddle
  • Caveat emptor
  • -------
  • Fig Rocks' Blog
  • placoderms
  • mosasaurs
  • ozzyrules244's Blog
  • Terry Dactyll's Blog
  • Sir Knightia's Blog
  • MaHa's Blog
  • shakinchevy2008's Blog
  • Stratio's Blog
  • ROOKMANDON's Blog
  • Phoenixflood's Blog
  • Brett Breakin' Rocks' Blog
  • Seattleguy's Blog
  • jkfoam's Blog
  • Erwan's Blog
  • Erwan's Blog
  • marksfossils' Blog
  • ibanda89's Blog
  • Liberty's Blog
  • Liberty's Blog
  • Lindsey's Blog
  • Back of Beyond
  • Ameenah's Blog
  • St. Johns River Shark Teeth/Florida
  • gordon's Blog
  • West4me's Blog
  • West4me's Blog
  • Pennsylvania Perspectives
  • michigantim's Blog
  • michigantim's Blog
  • lauraharp's Blog
  • lauraharp's Blog
  • micropterus101's Blog
  • micropterus101's Blog
  • GPeach129's Blog
  • Olenellus' Blog
  • nicciann's Blog
  • nicciann's Blog
  • Deep-Thinker's Blog
  • Deep-Thinker's Blog
  • bear-dog's Blog
  • javidal's Blog
  • Digging America
  • John Sun's Blog
  • John Sun's Blog
  • Ravsiden's Blog
  • Jurassic park
  • The Hunt for Fossils
  • The Fury's Grand Blog
  • julie's ??
  • Hunt'n 'odonts!
  • falcondob's Blog
  • Monkeyfuss' Blog
  • cyndy's Blog
  • pattyf's Blog
  • pattyf's Blog
  • chrisf's Blog
  • chrisf's Blog
  • nola's Blog
  • mercyrcfans88's Blog
  • Emily's PRI Adventure
  • trilobite guy's Blog
  • barnes' Blog
  • xenacanthus' Blog
  • myfossiltrips.blogspot.com
  • HeritageFossils' Blog
  • Fossilefinder's Blog
  • Fossilefinder's Blog
  • maybe a nest fossil?
  • farfarawy's Blog
  • Microfossil Mania!
  • blogs_blog_99
  • Southern Comfort
  • Emily's MotE Adventure
  • Eli's Blog
  • andreas' Blog
  • Recent Collecting Trips
  • retired blog
  • andreas' Blog test
  • fossilman7's Blog
  • Piranha Blog
  • xonenine's blog
  • xonenine's Blog
  • Fossil collecting and SAFETY
  • Detrius
  • pangeaman's Blog
  • pangeaman's Blog
  • pangeaman's Blog
  • Jocky's Blog
  • Jocky's Blog
  • Kehbe's Kwips
  • RomanK's Blog
  • Prehistoric Planet Trilogy
  • mikeymig's Blog
  • Western NY Explorer's Blog
  • Regg Cato's Blog
  • VisionXray23's Blog
  • Carcharodontosaurus' Blog
  • What is the largest dragonfly fossil? What are the top contenders?
  • Test Blog
  • jsnrice's blog
  • Lise MacFadden's Poetry Blog
  • BluffCountryFossils Adventure Blog
  • meadow's Blog
  • Makeing The Unlikley Happen
  • KansasFossilHunter's Blog
  • DarrenElliot's Blog
  • Hihimanu Hale
  • jesus' Blog
  • A Mesozoic Mosaic
  • Dinosaur comic
  • Zookeeperfossils
  • Cameronballislife31's Blog
  • My Blog
  • TomKoss' Blog
  • A guide to calcanea and astragali
  • Group Blog Test
  • Paleo Rantings of a Blockhead
  • Dead Dino is Art
  • The Amber Blog
  • Stocksdale's Blog
  • PaleoWilliam's Blog
  • TyrannosaurusRex's Facts
  • The Community Post
  • The Paleo-Tourist
  • Lyndon D Agate Johnson's Blog
  • BRobinson7's Blog
  • Eastern NC Trip Reports
  • Toofuntahh's Blog
  • Pterodactyl's Blog
  • A Beginner's Foray into Fossiling
  • Micropaleontology blog
  • Pondering on Dinosaurs
  • Fossil Preparation Blog
  • On Dinosaurs and Media
  • cheney416's fossil story
  • jpc
  • A Novice Geologist
  • Red-Headed Red-Neck Rock-Hound w/ My Trusty HellHound Cerberus
  • Red Headed
  • Paleo-Profiles
  • Walt's Blog
  • Between A Rock And A Hard Place
  • Rudist digging at "Point 25", St. Bartholomä, Styria, Austria (Campanian, Gosau-group)
  • Prognathodon saturator 101
  • Books I have enjoyed
  • Ladonia Texas Fossil Park
  • Trip Reports
  • Glendive Montana dinosaur bone Hell’s Creek
  • Test
  • Stratigraphic Succession of Chesapecten

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

  1. Barrelcactusaddict

    Bitterfeld Amber (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Bitterfeld Amber" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Friedersdorf and Zöckeritz Sub-Horizons Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Specimen C (Bubbles): 3.5g / 29x22x12mm Lighting: 140lm LED The origin of Bitterfeld amber has been the subject of much serious study and debate, especially within the last couple decades; it was originally believed to be redeposited material from the northern Baltic amber deposits, based mainly on the similarity of insect inclusions, but also due to their similarity in visual appearance and hardness. Chemical analyses of the amber by different authors, has recently shown that Bitterfeld amber came from a botanical and geographical source different from that of Baltic amber. Botanical Source: Recent chemical analyses (especially FTIR and ToF-SIMS) have shown significant differences; Baltic amber generally contains higher concentrations of succinic and communic acids, while Bitterfeld amber contains more dehydroabietic acid. Due to the presence of a specific triterpenoid (allobetulane class), Bitterfeld amber is believed to have been produced by a member of the Betulaceae Family (Birch). Age: Bitterfeld and Baltic ambers’ levels of carbon and hydrogen isotopes are extremely similar, indicating they are roughly the same age; Bitterfeld amber is found in Late Oligocene strata, which is younger than that which Baltic amber is found in: Bitterfeld amber was redeposited from nearby sources, before it was deposited into its current geological Formation (Cottbus), and was believed to have been carried northward into a delta by river action. Geological Setting: Bitterfeld amber shares a similar geological setting to Siegburgite, which it is found in association with. The upper portion of the Cottbus Fm., host to the large amber and coal reserves, was formed during the late Oligocene: the North Sea ingressed an area between two stretches of land running NE so SW, and as sea levels fell, forests developed, laying down organic matter; sea levels rose, and covered the organic matter in marine sediments. Bitterfeld amber is found in the lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Fm., which amber-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam: these layers constitute the “Bernsteinschluff” master horizon, which contains the upper “Friedersdorf” and lower “Zöckeritz” sub-horizons, which are particularly rich in amber. Differing levels of hydrogen isotopes in Baltic and Bitterfeld ambers indicate distinct geographical sources. There was a minimum of 3-degrees latitude difference between the northernmost Bitterfeld amber forests and the southernmost Baltic amber forests. Mining History: The Goitzsche Mine originally began coal production around 1949, and in 1955 amber was discovered; active mining of this amber began in 1975 until the Goitzsche Opencast Mine finally closed in 1991. From 1991 to 1999,the Goitzsche became subject to reclamation efforts, which involved flooding the mine with water, which was conducted from the nearby Mulde River. On 4/13/2000, the reclaimed site officially became a public recreation area. Sources: "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 “Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinate”; Review of Palaeobotany and Palynology; Wolfe, et. al. 2015 “Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt)”; Scientific Reports, Issue 10; Drzewicz, et. al. 2020 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR0Rr9hVIGK28Bb2pzEcWxw3PG4TGS42HaKOS99vwcT8_ivqgi9EiclEWa0

    © Kaegen Lau

  2. Barrelcactusaddict

    Bitterfeld Amber (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Bitterfeld Amber" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Friedersdorf and Zöckeritz Sub-Horizons Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Specimen B (Run/Layered): 2.1g / 24x20x9mm Lighting: Longwave UV The origin of Bitterfeld amber has been the subject of much serious study and debate, especially within the last couple decades; it was originally believed to be redeposited material from the northern Baltic amber deposits, based mainly on the similarity of insect inclusions, but also due to their similarity in visual appearance and hardness. Chemical analyses of the amber by different authors, has recently shown that Bitterfeld amber came from a botanical and geographical source different from that of Baltic amber. Botanical Source: Recent chemical analyses (especially FTIR and ToF-SIMS) have shown significant differences; Baltic amber generally contains higher concentrations of succinic and communic acids, while Bitterfeld amber contains more dehydroabietic acid. Due to the presence of a specific triterpenoid (allobetulane class), Bitterfeld amber is believed to have been produced by a member of the Betulaceae Family (Birch). Age: Bitterfeld and Baltic ambers’ levels of carbon and hydrogen isotopes are extremely similar, indicating they are roughly the same age; Bitterfeld amber is found in Late Oligocene strata, which is younger than that which Baltic amber is found in: Bitterfeld amber was redeposited from nearby sources, before it was deposited into its current geological Formation (Cottbus), and was believed to have been carried northward into a delta by river action. Geological Setting: Bitterfeld amber shares a similar geological setting to Siegburgite, which it is found in association with. The upper portion of the Cottbus Fm., host to the large amber and coal reserves, was formed during the late Oligocene: the North Sea ingressed an area between two stretches of land running NE to SW, and as sea levels fell, forests developed, laying down organic matter; sea levels rose, and covered the organic matter in marine sediments. Bitterfeld amber is found in the lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Fm., which amber-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam: these layers constitute the “Bernsteinschluff” master horizon, which contains the upper “Friedersdorf” and lower “Zöckeritz” sub-horizons, which are particularly rich in amber. Differing levels of hydrogen isotopes in Baltic and Bitterfeld ambers indicate distinct geographical sources. There was a minimum of 3-degrees latitude difference between the northernmost Bitterfeld amber forests and the southernmost Baltic amber forests. Mining History: The Goitzsche Mine originally began coal production around 1949, and in 1955 amber was discovered; active mining of this amber began in 1975 until the Goitzsche Opencast Mine finally closed in 1991. From 1991 to 1999, the Goitzsche became subject to reclamation efforts, which involved flooding the mine with water, which was conducted from the nearby Mulde River. On 4/13/2000, the reclaimed site officially became a public recreation area. Sources: "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 “Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinate”; Review of Palaeobotany and Palynology; Wolfe, et. al. 2015 “Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt)”; Scientific Reports, Issue 10; Drzewicz, et. al. 2020 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR0Rr9hVIGK28Bb2pzEcWxw3PG4TGS42HaKOS99vwcT8_ivqgi9EiclEWa0

    © Kaegen Lau

  3. Barrelcactusaddict

    Bitterfeld Amber (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Bitterfeld Amber" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Friedersdorf and Zöckeritz Sub-Horizons Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Specimen B (Run/Layered): 2.1g / 24x20x9mm Lighting: 140lm LED The origin of Bitterfeld amber has been the subject of much serious study and debate, especially within the last couple decades; it was originally believed to be redeposited material from the northern Baltic amber deposits, based mainly on the similarity of insect inclusions, but also due to their similarity in visual appearance and hardness. Chemical analyses of the amber by different authors, has recently shown that Bitterfeld amber came from a botanical and geographical source different from that of Baltic amber. Botanical Source: Recent chemical analyses (especially FTIR and ToF-SIMS) have shown significant differences; Baltic amber generally contains higher concentrations of succinic and communic acids, while Bitterfeld amber contains more dehydroabietic acid. Due to the presence of a specific triterpenoid (allobetulane class), Bitterfeld amber is believed to have been produced by a member of the Betulaceae Family (Birch). Age: Bitterfeld and Baltic ambers’ levels of carbon and hydrogen isotopes are extremely similar, indicating they are roughly the same age; Bitterfeld amber is found in Late Oligocene strata, which is younger than that which Baltic amber is found in: Bitterfeld amber was redeposited from nearby sources, before it was deposited into its current geological Formation (Cottbus), and was believed to have been carried northward into a delta by river action. Geological Setting: Bitterfeld amber shares a similar geological setting to Siegburgite, which it is found in association with. The upper portion of the Cottbus Fm., host to the large amber and coal reserves, was formed during the late Oligocene: the North Sea ingressed an area between two stretches of land running NE to SW, and as sea levels fell, forests developed, laying down organic matter; sea levels rose, and covered the organic matter in marine sediments. Bitterfeld amber is found in the lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Fm., which amber-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam: these layers constitute the “Bernsteinschluff” master horizon, which contains the upper “Friedersdorf” and lower “Zöckeritz” sub-horizons, which are particularly rich in amber. Differing levels of hydrogen isotopes in Baltic and Bitterfeld ambers indicate distinct geographical sources. There was a minimum of 3-degrees latitude difference between the northernmost Bitterfeld amber forests and the southernmost Baltic amber forests. Mining History: The Goitzsche Mine originally began coal production around 1949, and in 1955 amber was discovered; active mining of this amber began in 1975 until the Goitzsche Opencast Mine finally closed in 1991. From 1991 to 1999, the Goitzsche became subject to reclamation efforts, which involved flooding the mine with water, which was conducted from the nearby Mulde River. On 4/13/2000, the reclaimed site officially became a public recreation area. Sources: "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 “Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinate”; Review of Palaeobotany and Palynology; Wolfe, et. al. 2015 “Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt)”; Scientific Reports, Issue 10; Drzewicz, et. al. 2020 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR0Rr9hVIGK28Bb2pzEcWxw3PG4TGS42HaKOS99vwcT8_ivqgi9EiclEWa0

    © Kaegen Lau

  4. Barrelcactusaddict

    Bitterfeld Amber (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Bitterfeld Amber" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Friedersdorf and Zöckeritz Sub-Horizons Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Specimen A (Clear): 2.7g / 33x21x19mm Lighting: 140lm LED The origin of Bitterfeld amber has been the subject of much serious study and debate, especially within the last couple decades; it was originally believed to be redeposited material from the northern Baltic amber deposits, based mainly on the similarity of insect inclusions, but also due to their similarity in visual appearance and hardness. Chemical analyses of the amber by different authors, has recently shown that Bitterfeld amber came from a botanical and geographical source different from that of Baltic amber. Botanical Source: Recent chemical analyses (especially FTIR and ToF-SIMS) have shown significant differences; Baltic amber generally contains higher concentrations of succinic and communic acids, while Bitterfeld amber contains more dehydroabietic acid. Due to the presence of a specific triterpenoid (allobetulane class), Bitterfeld amber is believed to have been produced by a member of the Betulaceae Family (Birch). Age: Bitterfeld and Baltic ambers’ levels of carbon and hydrogen isotopes are extremely similar, indicating they are roughly the same age; Bitterfeld amber is found in Late Oligocene strata, which is younger than that which Baltic amber is found in: Bitterfeld amber was redeposited from nearby sources, before it was deposited into its current geological Formation (Cottbus), and was believed to have been carried northward into a delta by river action. Geological Setting: Bitterfeld amber shares a similar geological setting to Siegburgite, which it is found in association with. The upper portion of the Cottbus Fm., host to the large amber and coal reserves, was formed during the late Oligocene: the North Sea ingressed an area between two stretches of land running NE to SW, and as sea levels fell, forests developed, laying down organic matter; sea levels rose, and covered the organic matter in marine sediments. Bitterfeld amber is found in the lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Fm., which amber-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam: these layers constitute the “Bernsteinschluff” master horizon, which contains the upper “Friedersdorf” and lower “Zöckeritz” sub-horizons, which are particularly rich in amber. Differing levels of hydrogen isotopes in Baltic and Bitterfeld ambers indicate distinct geographical sources. There was a minimum of 3-degrees latitude difference between the northernmost Bitterfeld amber forests and the southernmost Baltic amber forests. Mining History: The Goitzsche Mine originally began coal production around 1949, and in 1955 amber was discovered; active mining of this amber began in 1975 until the Goitzsche Opencast Mine finally closed in 1991. From 1991 to 1999, the Goitzsche became subject to reclamation efforts, which involved flooding the mine with water, which was conducted from the nearby Mulde River. On 4/13/2000, the reclaimed site officially became a public recreation area. Sources: "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 “Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinate”; Review of Palaeobotany and Palynology; Wolfe, et. al. 2015 “Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt)”; Scientific Reports, Issue 10; Drzewicz, et. al. 2020 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR0Rr9hVIGK28Bb2pzEcWxw3PG4TGS42HaKOS99vwcT8_ivqgi9EiclEWa0

    © Kaegen Lau

  5. Barrelcactusaddict

    Bitterfeld Amber (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Bitterfeld Amber" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Friedersdorf and Zöckeritz Sub-Horizons Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Specimen A (Clear): 2.7g / 33x21x19mm Lighting: 140lm LED The origin of Bitterfeld amber has been the subject of much serious study and debate, especially within the last couple decades; it was originally believed to be redeposited material from the northern Baltic amber deposits, based mainly on the similarity of insect inclusions, but also due to their similarity in visual appearance and hardness. Chemical analyses of the amber by different authors, has recently shown that Bitterfeld amber came from a botanical and geographical source different from that of Baltic amber. Botanical Source: Recent chemical analyses (especially FTIR and ToF-SIMS) have shown significant differences; Baltic amber generally contains higher concentrations of succinic and communic acids, while Bitterfeld amber contains more dehydroabietic acid. Due to the presence of a specific triterpenoid (allobetulane class), Bitterfeld amber is believed to have been produced by a member of the Betulaceae Family (Birch). Age: Bitterfeld and Baltic ambers’ levels of carbon and hydrogen isotopes are extremely similar, indicating they are roughly the same age; Bitterfeld amber is found in Late Oligocene strata, which is younger than that which Baltic amber is found in: Bitterfeld amber was redeposited from nearby sources, before it was deposited into its current geological Formation (Cottbus), and was believed to have been carried northward into a delta by river action. Geological Setting: Bitterfeld amber shares a similar geological setting to Siegburgite, which it is found in association with. The upper portion of the Cottbus Fm., host to the large amber and coal reserves, was formed during the late Oligocene: the North Sea ingressed an area between two stretches of land running NE to SW, and as sea levels fell, forests developed, laying down organic matter; sea levels rose, and covered the organic matter in marine sediments. Bitterfeld amber is found in the lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Fm., which amber-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam: these layers constitute the “Bernsteinschluff” master horizon, which contains the upper “Friedersdorf” and lower “Zöckeritz” sub-horizons, which are particularly rich in amber. Differing levels of hydrogen isotopes in Baltic and Bitterfeld ambers indicate distinct geographical sources. There was a minimum of 3-degrees latitude difference between the northernmost Bitterfeld amber forests and the southernmost Baltic amber forests. Mining History: The Goitzsche Mine originally began coal production around 1949, and in 1955 amber was discovered; active mining of this amber began in 1975 until the Goitzsche Opencast Mine finally closed in 1991. From 1991 to 1999, the Goitzsche became subject to reclamation efforts, which involved flooding the mine with water, which was conducted from the nearby Mulde River. On 4/13/2000, the reclaimed site officially became a public recreation area. Sources: "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 “Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinate”; Review of Palaeobotany and Palynology; Wolfe, et. al. 2015 “Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt)”; Scientific Reports, Issue 10; Drzewicz, et. al. 2020 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR0Rr9hVIGK28Bb2pzEcWxw3PG4TGS42HaKOS99vwcT8_ivqgi9EiclEWa0

    © Kaegen Lau

  6. Barrelcactusaddict

    Siegburgite (Cottbus Fm., 25.5-23.5 Ma [min.])

    From the album: Fossil Amber and Copal: Worldwide Localities

    "Siegburgite" Goitzsche Opencast Mine Bitterfeld-Wolfen, Saxony-Anhalt State, Germany Bernsteinschluff Horizon Cottbus Fm. (25.5-23.5 Ma [min.]) Chemical Composition: C: 81.37%, H: 5.26%, O: 13.37%, Cinnamic Acid: 0.0073% Specimen A (Top Left): 0.4g / 14x12x6mm Specimen B (Top Right): 0.5g / 14x14x8mm Specimen C (Bottom Left): 0.3g / 14x12x4mm Specimen D (Bottom Right): 0.2g / 13x10x4mm *I did not take a photograph of these specimens under longwave UV, due to the fluorescent response of Siegburgite being so weak; they fluoresce a dull burgundy. Siegburgite is referred to as an "accessory resin", but is considered a true amber. It occurs alongside several other accessory resin species, as well as the more well-known Bitterfeld amber. Siegburgite is a fascinating amber, and is one of the few fossil resins classified as a Class III resin; it is essentially a natural polystyrene, found as concretions where it is a binding agent to fine sand and mica: the sand is often evenly distributed, and is variable in proportion to the resin, occasionally more than 60%. Siegburgite is highly flammable. Siegburgite was produced by a plant of the genus Liquidambar (Hamamelidaceae Family, also commonly known as the "witch-hazel" family): within the fresh resin, known as storax or copalm balsam, cinnamic acid and esters quickly decarboxylate (chemical reaction that removes a carboxyl group, and releases carbon dioxide), forming styrene; upon its burial, the newly-formed styrene underwent polymerization over tens of millions of years, as it became polystyrene. It is found in the lignite (German: "Braunkohle"), lignite-sand, and lignite-clay layers of the upper portion of the Cottbus Formation; Bitterfeld amber is also found within this Formation. The amber- and accessory resin-bearing layers are situated beneath the Bitterfeld Main Coal Seam, and above the Breitenfeld Seam. The Goitzsche Mine, from which Siegburgite and other fossil resins were obtained, opened in 1949 and closed in 1991. Sources: "Siegburgite, a new Fossil Resin."; Jahrbuch für Mineralogie 1875; pp. 128-133; A. V. Lasaulx "Roman Amber Identified as Siegburgite"; p. 12; Dietz, Catanzariti, Quintero, Jimeno 2013 "The System of Mineralogy of James Dwight Dana 1837-1868: Descriptive Mineralogy"; p. 1005; Dana 1892 "Biology of Amber-Producing Trees: Focus on Case Studies of Hymenaea and Agathis"; p. 9; Jean H. Langenheim 1995 "The First Fossil Cyphophthalmid (Arachnida: Opiliones), from Bitterfeld Amber, Germany"; Jason A., Gonzalo Giribet 2003 "Geography - Coal Mining in the Goitzsche/ The geology of the Goitzsche"; Europagymnasium Walther-Rathenau-Bitterfeld Comeniusprojekt "Die Bernsteinlagerstätte Bitterfeld, nur ein Höhepunkt des Vorkommens von Bernstein (Succinit) im Tertiär Mitteldeutschlands"; Fuhrman 2005 http://www.regionalgeologie-ost.de/Abb. 23.11 Halle-Merseburger Tertiaer.pdf?fbclid=IwAR1RiYz3wsaHe-k20RnzaZv4jZt29VpR9oxrndNKKQ7ueDaygvpPC4peqVQ

    © Kaegen Lau

  7. Yannickrb

    Sponge or Bone ?

    Hello! its my first time writing in this forum. i am from Germany and usuals discuss my findings in a German forum. But this time no one was able to identify my new fossil. it was found at the cost of the Baltic Sea in northern Germany. (You can expect fossils from every age, because of the ice age) You can see a sponge like structure with some big channels. It seems that the sponge like structure was once covered from some kind of “skin” as you can see in the pictures. the fossil measures 10“ x 4,7“ (25cm x 11cm) and seems to be heavy as a normal rock. in a German forum it was discussed if it could be some part of a big bone or rather some kind of sponge. hopefully some one of you does know the answer. please excuse my bad English and have a nice day! yannick
  8. Barrelcactusaddict

    Golling Amber (Roßfeld Fm., 132.9-129.4 Ma)

    From the album: Fossil Amber and Copal: Worldwide Localities

    Illuminated partial nodule of transparent amber (see related entry) from a now-inaccessible site near Golling an der Salzach, Salzburg, Austria; specimen weighs 2.5g and measures 24x24x9mm. This specimen is slightly coated in matrix, and is similar in dimensions and identical in weight to the other Golling specimen, detailed in a separate entry. Transmitted LED light was used to display the piece's clarity. Amber from the Roßfeld (Rossfeld) Formation is dated to be early cretaceous (Hauterivian) in age.

    © Kaegen Lau

  9. Barrelcactusaddict

    Golling Amber (Roßfeld Fm., 132.9-129.4 Ma)

    From the album: Fossil Amber and Copal: Worldwide Localities

    Partial nodule of transparent amber from a now-inaccessible site near Golling an der Salzach, Salzburg, Austria; specimen weighs 2.5g and measures 24x24x9mm. This specimen has very little matrix attached to the exterior, and is similar in dimensions and identical in weight to the other Golling specimen, detailed in a separate entry. Amber from the Roßfeld (Rossfeld) Formation is dated to be early cretaceous (Hauterivian) in age.

    © Kaegen Lau

  10. Barrelcactusaddict

    Golling Amber (Roßfeld Fm., 132.9-129.4 Ma)

    From the album: Fossil Amber and Copal: Worldwide Localities

    Partial nodule of translucent amber from a now-inaccessible site near Golling an der Salzach, Salzburg, Austria; specimen weighs 2.5g and measures 23x22x8mm. This piece has a thin layer of matrix (contributing to a slight increase in weight), and despite having smaller dimensions, it weighs the same as the larger, similarly-shaped Golling amber specimen from a separate entry. Amber from the Roßfeld (Rossfeld) Formation is dated to be early cretaceous (Hauterivian) in age.

    © Kaegen Lau

  11. Barrelcactusaddict

    Golling Amber (Roßfeld Fm., 132.9-129.4 Ma)

    From the album: Fossil Amber and Copal: Worldwide Localities

    Partial nodule from a now-inaccessible site near Golling an der Salzach, Salzburg, Austria; specimen weighs 3.3g and measures 22x21x14mm. Amber from the Roßfeld (Rossfeld) Formation is dated to be early cretaceous (Hauterivian) in age.

    © Kaegen Lau

  12. Hi everyone! Recently I have purchased this item. But when I received I saw that the two leg laying in upper layer of the matrix. (Picture below) So is this original fossil or this is fake one? Thank you!
  13. Thorben Krähling

    Need help to identify what this is

    Found in Germany, sadly i don´t know if i found it where i live, in Hamm NRW, germany or while i was visting either the north or east sea (Nordsee/Ostsee). Had it since I was a small child and was always fascinated by it but couldnt find out, what it is. Because I have it in my possession for about 15 years, i cant really tell much more about location or anthing else, just that it looks like an egg to me, but that might be what I want it to be. its about 6x3x2,5cm big, one side is almost flat with some dark spots and a crack i think going through it. the other side looks like an egg, but has a crater on it. Between the flat and the convex is a dark grey border around 1mm thick that goes around the whole thing.
  14. Matt-In-Deutschland

    New Year New Hobby

    Hi All and happy new year, I have had an interest in fossils for some time now but have done little about it so very recently I decided that I really should learn more and get out there and see what I can find. And that is why I am here, in the hope to learn and further my interest. I am spending today with a slight hangover doing asmuch research as I can and I hope tomorrow weather allowing will find me out and about in a former asphalt open mine that is very near to me . I have been given the heads up on a few other places and I think I found some plant fossils on a recent walk. I will post them in the ID section shortly. Also if there are any members here from Germany, in particular Lower Saxony I would love to have a chat. I'm a Brit who s new to Germany so my German isn't so good yet. Best wishes Matt
  15. Le Quoc

    Is this Gomphotherium?

    Hello everyone, I have been offered this tooth by one guy. He said this is Gomphotherium. Because I don't have any knowledge about this so can you help me to identify the tooth is actually Gomphotherium or not (I know that there are some ancient elephant from Germany also). Is this a suitable price to get this piece? Thanks for your help!
  16. From the album: Arthropods

    Chotecops ferdinandi (Kayser 1880) lower devonian Bundenbach, Germany
  17. Ahoi, I got myself some ichthysaur paddle bones. They are from the Lias Epsilon of Altdorf, Germany. Can someone tell me a species? @pachy-pleuro-whatnot-odon perhaps? Stenopterygius? I plan to try and shape a paddle from clay with imprints to hold the fossils loosely in place. That will be for the paleo-recreation section then, but first I have to know what shape of paddle to make. Best Regards, J
  18. From the album: Plants

    Hemitrapa heissigi miocene Near Augsburg Germany
  19. Hello all, Last Saturday our geology club went on a field trip to the Breckweg limestone quarry in Rheine, Germany. Although my main interest lies with minerals, I found a nice fossil. I have been trying to identify it, but unfortunately without any succes. I hope you can help me out. According to the information I received, the limestone found at the quarry is from the Cenomanian. Thanks in advance!
  20. Ludwigia

    A Few More Shark Teeth

    I visited my favorite shark tooth site just north of the Lake of Constance again recently and just wanted to show off a few finds. If anyone notices that I've made any mistakes with my ids then please let me know. Araloselachus cuspidatus The next two I would call Carcharodon (Cosmopolotidus) hastalis, although I know that some still lump these under Isurus. Carcharhinus priscus And the next two I've identified as Odontaspis molassica.
  21. Ludwigia

    Liostrea sp. (Douville 1904)

    From the album: German Gastropods and Bivalves

    11x8cm. Humphriesianum zone, Bajocian, Middle Jurassic. Found on a field near Oefingen, B.-W., Germany.
  22. From the album: Vertebrates (other than fish)

    4x2cm. Cetacean earbone (Bulla timpani). From Billafingen, B.-W., Germany. Miocene Burdigalian.
  23. Praefectus

    REMPC-C0042 Solnhofen Ammonite

    From the album: Prae's Collection (REMPC)

    Ammonite - Indeterminate species Jurassic, Tithonian Solnhofen Limestone, Altmuhltal Formation Bavaria, Germany
  24. Hello! So I found these three fossils and was curious to know about them... one i think is to be a bryozoan branch the tooth i believe to be a cow tooth not sure how old it may be and the last one is a type of small brachiopod its super tiny but again I don't know much about fossils yet but I am ready to learn more ! So if any one knows anything about these fossils that'd be a great help! First 6 pictures are from the riverbed and the last two are from the beach in Lübeck,Germany Thanks!
  25. Hello dear fellow forum members, I just encountered an offer that made me stop. the Information above is all the seller has, except for the weight of the bone (around 120 g) What do you think this could be? Thanks, J
×
×
  • Create New...